*Memos:
-
My post explains ToDtype() about
scale=False
. - My post explains how to convert and scale a PIL Image to an Image in PyTorch.
- My post explains ToImage().
- My post explains Compose().
- My post explains ToTensor().
- My post explains PILToTensor().
- My post explains ToPILImage() about no arguments.
- My post explains OxfordIIITPet().
ToDtype() can set a dtype to an Image, Video or tensor and scale its values as shown below. *It's about scale=True
:
*Memos:
- The 1st argument for initialization is
dtype
(Required-Type:Union[dtype, Dict[Union[Type, str], Optional[dtype]]
): *Memos: - The 2nd argument for initialization is
scale
(Optional-Default:False
-Type:bool
): *Memos: - The 1st argument is
img
(Required-Type:PIL Image
ortensor
/ndarray
(int
/float
/complex
/bool
)): *Memos:- A tensor must be 0D or more D.
- A ndarray must be 0D or more D.
- Don't use
img=
.
-
ToDtype(dtype, scale=True)
is the recommended replacement for ConvertImageDtype(dtype). *ConvertImageDtype()
is deprecated. -
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ToImage, ToDtype
import torch
import numpy as np
td = ToDtype(dtype=torch.float32)
td = ToDtype(dtype=torch.float32, scale=False)
td
# ToDtype(scale=False)
PILImage_data = OxfordIIITPet(
root="data",
transform=None
)
Image_data = OxfordIIITPet(
root="data",
transform=ToImage()
)
PILImage_data[0][0].getdata()
# [(37, 20, 12),
# (35, 18, 10),
# (36, 19, 11),
# (36, 19, 11),
# (37, 18, 11),
# ...]
Image_data[0][0]
# Image([[[37, 35, 36, ..., 247, 249, 249],
# [35, 35, 37, ..., 246, 248, 249],
# ...,
# [28, 28, 27, ..., 59, 65, 76]],
# [[20, 18, 19, ..., 248, 248, 248],
# [18, 18, 20, ..., 247, 247, 248],
# ...,
# [27, 27, 27, ..., 94, 106, 117]],
# [[12, 10, 11, ..., 253, 253, 253],
# [10, 10, 12, ..., 251, 252, 253],
# ...,
# [35, 35, 35, ..., 214, 232, 223]]], dtype=torch.uint8,)
td = ToDtype(dtype=torch.float32, scale=True)
td(PILImage_data) # It's still PIL Image.
# Dataset OxfordIIITPet
# Number of datapoints: 3680
# Root location: data
td(PILImage_data[0])
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
list(td(PILImage_data[0][0]).getdata())
# [(37, 20, 12),
# (35, 18, 10),
# (36, 19, 11),
# (36, 19, 11),
# (37, 18, 11),
# ...]
td(Image_data[0])
# (Image([[[0.1451, 0.1373, 0.1412, ..., 0.9686, 0.9765, 0.9765],
# [0.1373, 0.1373, 0.1451, ..., 0.9647, 0.9725, 0.9765],
# ...,
# [0.1098, 0.1098, 0.1059, ..., 0.2314, 0.2549, 0.2980]],
# [[0.0784, 0.0706, 0.0745, ..., 0.9725, 0.9725, 0.9725],
# [0.0706, 0.0706, 0.0784, ..., 0.9686, 0.9686, 0.9725],
# ...,
# [0.1059, 0.1059, 0.1059, ..., 0.3686, 0.4157, 0.4588]],
# [[0.0471, 0.0392, 0.0431, ..., 0.9922, 0.9922, 0.9922],
# [0.0392, 0.0392, 0.0471, ..., 0.9843, 0.9882, 0.9922],
# ...,
# [0.1373, 0.1373, 0.1373, ..., 0.8392, 0.9098, 0.8745]]],), 0)
td(Image_data[0][0])
# Image([[[0.1451, 0.1373, 0.1412, ..., 0.9686, 0.9765, 0.9765],
# [0.1373, 0.1373, 0.1451, ..., 0.9647, 0.9725, 0.9765],
# ...,
# [0.1098, 0.1098, 0.1059, ..., 0.2314, 0.2549, 0.2980]],
# [[0.0784, 0.0706, 0.0745, ..., 0.9725, 0.9725, 0.9725],
# [0.0706, 0.0706, 0.0784, ..., 0.9686, 0.9686, 0.9725],
# ...,
# [0.1059, 0.1059, 0.1059, ..., 0.3686, 0.4157, 0.4588]],
# [[0.0471, 0.0392, 0.0431, ..., 0.9922, 0.9922, 0.9922],
# [0.0392, 0.0392, 0.0471, ..., 0.9843, 0.9882, 0.9922],
# ...,
# [0.1373, 0.1373, 0.1373, ..., 0.8392, 0.9098, 0.8745]]],)
td((torch.tensor(3), 0)) # int64
td((torch.tensor(3, dtype=torch.int64), 0))
# (tensor(3.2526e-19), 0)
td(torch.tensor(3))
# tensor(3.2526e-19)
td((torch.tensor([0, 1, 2, 3]), 0))
# (tensor([0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]), 0)
td(torch.tensor([0, 1, 2, 3]))
# tensor([0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19])
td((torch.tensor([[0, 1, 2, 3]]), 0))
# (tensor([[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]), 0)
td(torch.tensor([[0, 1, 2, 3]]))
# tensor([[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]])
td((torch.tensor([[[0, 1, 2, 3]]]), 0))
# (tensor([[[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]]), 0)
td(torch.tensor([[[0, 1, 2, 3]]]))
# tensor([[[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]])
td((torch.tensor([[[[0, 1, 2, 3]]]]), 0))
# (tensor([[[[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]]]), 0)
td(torch.tensor([[[[0, 1, 2, 3]]]]))
# tensor([[[[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]]])
td((torch.tensor([[[[[0, 1, 2, 3]]]]]), 0))
# (tensor([[[[[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]]]]), 0)
td(torch.tensor([[[[[0, 1, 2, 3]]]]]))
# tensor([[[[[0.0000e+00, 1.0842e-19, 2.1684e-19, 3.2526e-19]]]]])
td((torch.tensor([[0, 1, 2, 3]], dtype=torch.int32), 0))
# (tensor([[0.0000e+00, 4.6566e-10, 9.3132e-10, 1.3970e-09]]), 0)
td((torch.tensor([[0., 1., 2., 3.]]), 0)) # float32
td((torch.tensor([[0., 1., 2., 3.]], dtype=torch.float32), 0))
td((torch.tensor([[0., 1., 2., 3.]], dtype=torch.float64), 0))
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)) # complex64
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]],
dtype=torch.complex64), 0))
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]],
dtype=torch.complex32), 0))
# (tensor([[0., 1., 2., 3.]]), 0)
td((torch.tensor([[True, False, True, False]]), 0)) # bool
td((torch.tensor([[True, False, True, False]], dtype=torch.bool), 0))
# (tensor([[1., 0., 1., 0.]]), 0)
td((np.array(3), 0)) # int32
td((np.array(3, dtype=np.int32), 0))
# (array(3), 0)
td(np.array(3))
# array(3)
td((np.array([0, 1, 2, 3]), 0))
# (array([0, 1, 2, 3]), 0)
td(np.array([0, 1, 2, 3]))
# array([0, 1, 2, 3])
td((np.array([[0, 1, 2, 3]]), 0))
# (array([[0, 1, 2, 3]]), 0)
td(np.array([[0, 1, 2, 3]]))
# array([[0, 1, 2, 3]])
td((np.array([[[0, 1, 2, 3]]]), 0))
# (array([[[0, 1, 2, 3]]]), 0)
td(np.array([[[0, 1, 2, 3]]]))
# array([[[0, 1, 2, 3]]])
td((np.array([[[[0, 1, 2, 3]]]]), 0))
# (array([[[[0, 1, 2, 3]]]]), 0)
td(np.array([[[[0, 1, 2, 3]]]]))
# array([[[[0, 1, 2, 3]]]])
td((np.array([[[[[0, 1, 2, 3]]]]]), 0))
# (array([[[[[0, 1, 2, 3]]]]]), 0)
td(np.array([[[[[0, 1, 2, 3]]]]]))
# array([[[[[0, 1, 2, 3]]]]])
td((np.array([[0, 1, 2, 3]], dtype=np.int64), 0))
# (array([[0, 1, 2, 3]], dtype=int64), 0)
td((np.array([[0., 1., 2., 3.]]), 0)) # float64
td((np.array([[0., 1., 2., 3.]], dtype=np.float64), 0))
# (array([[0., 1., 2., 3.]]), 0)
td((np.array([[0., 1., 2., 3.]], dtype=np.float32), 0))
# (array([[0., 1., 2., 3.]], dtype=float32), 0)
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)) # complex128
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=np.complex128), 0))
# (array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=np.complex64), 0))
# (array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=complex64), 0)
td((np.array([[True, False, True, False]]), 0)) # bool
td((np.array([[True, False, True, False]], dtype=bool), 0))
# (array([[True, False, True, False]]), 0)
td = ToDtype(dtype=torch.complex64, scale=True)
td(PILImage_data) # It's still PIL Image.
# Dataset OxfordIIITPet
# Number of datapoints: 3680
# Root location: data
td(PILImage_data[0])
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
list(td(PILImage_data[0][0]).getdata())
# [(37, 20, 12),
# (35, 18, 10),
# (36, 19, 11),
# (36, 19, 11),
# (37, 18, 11),
# ...]
td(Image_data[0])
td(Image_data[0][0])
td((torch.tensor(3), 0)) # int64
td((torch.tensor(3, dtype=torch.int64), 0))
td(torch.tensor(3))
td((torch.tensor([0, 1, 2, 3]), 0))
td(torch.tensor([0, 1, 2, 3]))
td((torch.tensor([[0, 1, 2, 3]]), 0))
td(torch.tensor([[0, 1, 2, 3]]))
td((torch.tensor([[[0, 1, 2, 3]]]), 0))
td(torch.tensor([[[0, 1, 2, 3]]]))
td((torch.tensor([[[[0, 1, 2, 3]]]]), 0))
td(torch.tensor([[[[0, 1, 2, 3]]]]))
td((torch.tensor([[[[[0, 1, 2, 3]]]]]), 0))
td(torch.tensor([[[[[0, 1, 2, 3]]]]]))
td((torch.tensor([[0, 1, 2, 3]], dtype=torch.int32), 0))
# Error
td((torch.tensor([[0., 1., 2., 3.]]), 0)) # float32
td((torch.tensor([[0., 1., 2., 3.]], dtype=torch.float32), 0))
td((torch.tensor([[0., 1., 2., 3.]], dtype=torch.float64), 0))
# (tensor([[0.0000+0.j, 1.9990+0.j, 3.9980+0.j, 5.9970+0.j]]), 0)
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)) # complex64
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]],
dtype=torch.complex64), 0))
# (tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]],
dtype=torch.complex32), 0))
td((torch.tensor([[True, False, True, False]]), 0)) # bool
td((torch.tensor([[True, False, True, False]], dtype=torch.bool), 0))
# Error
td((np.array(3), 0)) # int32
td((np.array(3, dtype=np.int32), 0))
# (array(3), 0)
td(np.array(3))
# array(3)
td((np.array([0, 1, 2, 3]), 0))
# (array([0, 1, 2, 3]), 0)
td(np.array([0, 1, 2, 3]))
# array([0, 1, 2, 3])
td((np.array([[0, 1, 2, 3]]), 0))
# (array([[0, 1, 2, 3]]), 0)
td(np.array([[0, 1, 2, 3]]))
# array([[0, 1, 2, 3]])
td((np.array([[[0, 1, 2, 3]]]), 0))
# (array([[[0, 1, 2, 3]]]), 0)
td(np.array([[[0, 1, 2, 3]]]))
# array([[[0, 1, 2, 3]]])
td((np.array([[0, 1, 2, 3]], dtype=np.int64), 0))
# (array([[0, 1, 2, 3]], dtype=int64), 0)
td((np.array([[0., 1., 2., 3.]]), 0)) # float64
td((np.array([[0., 1., 2., 3.]], dtype=np.float64), 0))
# (array([[0., 1., 2., 3.]]), 0)
td((np.array([[0., 1., 2., 3.]], dtype=np.float32), 0))
# (array([[0., 1., 2., 3.]], dtype=float32), 0)
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)) # complex128
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=np.complex128), 0))
# (array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=np.complex64), 0))
# (array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=complex64), 0)
td((np.array([[True, False, True, False]]), 0)) # bool
td((np.array([[True, False, True, False]], dtype=bool), 0))
# (array([[True, False, True, False]]), 0)
td = ToDtype(dtype=torch.bool, scale=True)
td(PILImage_data) # It's still PIL Image.
# Dataset OxfordIIITPet
# Number of datapoints: 3680
# Root location: data
td(PILImage_data[0])
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
list(td(PILImage_data[0][0]).getdata())
# [(37, 20, 12),
# (35, 18, 10),
# (36, 19, 11),
# (36, 19, 11),
# (37, 18, 11),
# ...]
td(Image_data[0])
td(Image_data[0][0])
td((torch.tensor(3), 0)) # int64
td((torch.tensor(3, dtype=torch.int64), 0))
td(torch.tensor(3))
td((torch.tensor([0, 1, 2, 3]), 0))
td(torch.tensor([0, 1, 2, 3]))
td((torch.tensor([[0, 1, 2, 3]]), 0))
td(torch.tensor([[0, 1, 2, 3]]))
td((torch.tensor([[[0, 1, 2, 3]]]), 0))
td(torch.tensor([[[0, 1, 2, 3]]]))
td((torch.tensor([[[[0, 1, 2, 3]]]]), 0))
td(torch.tensor([[[[0, 1, 2, 3]]]]))
td((torch.tensor([[[[[0, 1, 2, 3]]]]]), 0))
td(torch.tensor([[[[[0, 1, 2, 3]]]]]))
td((torch.tensor([[0, 1, 2, 3]], dtype=torch.int32), 0))
# Error
td((torch.tensor([[0., 1., 2., 3.]]), 0)) # float32
td((torch.tensor([[0., 1., 2., 3.]], dtype=torch.float32), 0))
td((torch.tensor([[0., 1., 2., 3.]], dtype=torch.float64), 0))
# (tensor([[False, True, True, True]]), 0)
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)) # complex64
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]],
dtype=torch.complex64), 0))
td((torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]],
dtype=torch.complex32), 0))
# Error
td((torch.tensor([[True, False, True, False]]), 0)) # bool
td((torch.tensor([[True, False, True, False]], dtype=torch.bool), 0))
# (tensor([[True, False, True, False]]), 0)
td((np.array(3), 0)) # int32
td((np.array(3, dtype=np.int32), 0))
# (array(3), 0)
td(np.array(3))
# array(3)
td((np.array([0, 1, 2, 3]), 0))
# (array([0, 1, 2, 3]), 0)
td(np.array([0, 1, 2, 3]))
# array([0, 1, 2, 3])
td((np.array([[0, 1, 2, 3]]), 0))
# (array([[0, 1, 2, 3]]), 0)
td(np.array([[0, 1, 2, 3]]))
# array([[0, 1, 2, 3]])
td((np.array([[[0, 1, 2, 3]]]), 0))
# (array([[[0, 1, 2, 3]]]), 0)
td(np.array([[[0, 1, 2, 3]]]))
# array([[[0, 1, 2, 3]]])
td((np.array([[0, 1, 2, 3]], dtype=np.int64), 0))
# (array([[0, 1, 2, 3]], dtype=int64), 0)
td((np.array([[0., 1., 2., 3.]]), 0)) # float64
td((np.array([[0., 1., 2., 3.]], dtype=np.float64), 0))
# (array([[0., 1., 2., 3.]]), 0)
td((np.array([[0., 1., 2., 3.]], dtype=np.float32), 0))
# (array([[0., 1., 2., 3.]], dtype=float32), 0)
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)) # complex128
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=np.complex128), 0))
# (array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]), 0)
td((np.array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=np.complex64), 0))
# (array([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]], dtype=complex64), 0)
td((np.array([[True, False, True, False]]), 0)) # bool
td((np.array([[True, False, True, False]], dtype=bool), 0))
# (array([[True, False, True, False]]), 0)
Top comments (0)