# Havel–Hakimi Algorithm in Java

The Havel–Hakimi algorithm is an algorithm in graph theory solving the graph realization problem. That is, it answers the following question: Given a finite list of nonnegative integers, is there a simple graph such that its degree sequence is exactly this list? The degree sequence is a list of numbers that for each vertex of the graph states how many neighbors it has. For a positive answer, the list of integers is called graphic. The algorithm constructs a special solution if one exists or proves that one cannot find a positive answer. This construction is based on a recursive algorithm. The algorithm was published by Havel (1955), and later by Hakimi (1962).

``````import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
public class HavelHakimi { //Delete all zeros from the list
public static void deleteZeros(ArrayList < Integer > list) {
for (int i = 0; i < list.size(); i++) {
int num
= list.get(i);
if (num == 0) {
list.remove(i);
i = 0;
}
}
} //Put thelist in descending order
public static void descendingSort(ArrayList list) {
Collections.sort(list, Collections.reverseOrder());
}
//Check the length of the list against a given number
public static boolean lengthCheck(int length, ArrayList list) {
if (length > list.size()) {
return true;
} else {
return false;
}
} //Subtract 1 from the first N numbers in the list
public static void frontElim(int numElim, ArrayList list) {
System.out.println(numElim);
System.out.println(list.size());
if (numElim >= list.size()) {
System.out.println("Shits fucked.");
}
for (int i = 0; i <= numElim; i++) {
list.set(i, (Integer) list.get(i) -
1);
}
} //Recursively perform the Havel-Hakimi algorithm on a given list
public static boolean HavelHakimi(ArrayList list) {
int N = 0;
deleteZeros(list);
if (list.size() == 0) return
true;
descendingSort(list);
N = (int) list.remove(0);
if (N > list.size()) return false;
frontElim(N, list);
return HavelHakimi(list);
}
public static void main(String[] args) {
int numWitness = 10; //create a random list
Random random = new Random();
ArrayList < Integer > randList = new ArrayList < Integer > ();
for (int i = 0; i <= numWitness - 1; i++) {
} //Make a pre defined list for testing
ArrayList < Integer > testList = new ArrayList < Integer > ();