Same fleet. Same cities. Less miles. More on-time. Lower fuel.
Thatโs not magic โ itโs constraints + streaming + smart heuristics.
Hereโs the blueprint Iโd ship today ๐
โพ Core problems youโll solve
โพ VRP flavors: CVRP, VRPTW, multi-depot, pickup-&-delivery, cold-chain
โพ Hard constraints: capacity, time windows, driver shifts, service times
โพ Soft goals: distance, on-time %, COโ, tolls, SLA penalties, fairness
โพ Java-first architecture
โพ Ingest โ Kafka: orders, live GPS pings, traffic, depot status
โพ Store โ Postgres (orders & depots), Redis (hot state), ClickHouse (historical KPIs)
โพ Routing graph โ GraphHopper/OSRM (road speeds, truck profiles, turn costs)
โพ Optimizer โ Java 21 service using OptaPlanner or OR-Tools (Java API)
โพ Stream brain โ Flink/Kafka Streams for ETA updates & re-optimization triggers
โพ API/Gateway โ Spring Boot / Quarkus (gRPC/REST) with SSE/WebSockets for live boards
โพ Obs โ Micrometer + Prometheus + OpenTelemetry (per-route KPIs & solver stats)
โพ Optimization loop (fast & practical)
Build problem: vehicles, jobs, time windows, distances from routing graph
Seed solution: nearest-neighbor / sweep / savings heuristic
Publish: assign routes; stream ETAs to ops & drivers
React: when traffic or delays hit โ incremental re-optimize affected region only
โพ Real-time realities (what actually works)
โพ Rolling horizon: lock near-term stops, optimize the tail โ drivers donโt like teleporting routes
โพ Regional shards: city or depot partitions keep solve times predictable
โพ SLA safety: deadline guardrails override โshortest pathโ when needed
โพ What-if: sandbox a copy of live data for planners (no impact on drivers)
โพ Latency targets
โพ Small batch (โค200 stops/depot) initial plan: < 20โ60s
โพ Incremental re-plan (spill, traffic, no-show): < 2โ5s
โพ ETA refresh pipeline end-to-end: < 1s
Keep the UI streaming partial results โ progress beats silence.
โพ Java tuning cheatsheet
โพ Java 21 virtual threads around IO (maps, DB, telemetry)
โพ G1/ZGC with small regions; avoid large object churn in scorers
โพ Precompute time-dependent travel times; avoid calling routing server inside inner loops
โพ โPlanner overrides neededโ โ should trend down as the system learns
โพ Rollout in 4 sprints
Static nightly plans + live ETA dashboard
Mid-day incremental re-opt (traffic/incidents)
Driver app hooks (ack, proof-of-delivery) + SLA penalties in score
Multi-depot balancing, what-if simulator, cost/COโ optimization
Takeaway
Great logistics isnโt โsolve once.โ
Itโs a Java loop that senses, decides, and adapts โ all day, every day.
Top comments (0)