DEV Community

Narednra Reddy Yadama
Narednra Reddy Yadama

Posted on

๐Ÿšš ๐—Ÿ๐—ผ๐—ด๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€ ๐—ฅ๐—ผ๐˜‚๐˜๐—ฒ ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ โ€” ๐—ฏ๐˜‚๐—ถ๐—น๐˜ (๐˜€๐—ฎ๐—ป๐—ฒ๐—น๐˜†) ๐˜„๐—ถ๐˜๐—ต ๐—๐—ฎ๐˜ƒ๐—ฎ

Same fleet. Same cities. Less miles. More on-time. Lower fuel.

Thatโ€™s not magic โ€” itโ€™s constraints + streaming + smart heuristics.

Hereโ€™s the blueprint Iโ€™d ship today ๐Ÿ‘‡

โ—พ Core problems youโ€™ll solve

โ—พ VRP flavors: CVRP, VRPTW, multi-depot, pickup-&-delivery, cold-chain

โ—พ Hard constraints: capacity, time windows, driver shifts, service times

โ—พ Soft goals: distance, on-time %, COโ‚‚, tolls, SLA penalties, fairness

โ—พ Java-first architecture

โ—พ Ingest โ†’ Kafka: orders, live GPS pings, traffic, depot status

โ—พ Store โ†’ Postgres (orders & depots), Redis (hot state), ClickHouse (historical KPIs)

โ—พ Routing graph โ†’ GraphHopper/OSRM (road speeds, truck profiles, turn costs)

โ—พ Optimizer โ†’ Java 21 service using OptaPlanner or OR-Tools (Java API)

โ—พ Stream brain โ†’ Flink/Kafka Streams for ETA updates & re-optimization triggers

โ—พ API/Gateway โ†’ Spring Boot / Quarkus (gRPC/REST) with SSE/WebSockets for live boards

โ—พ Obs โ†’ Micrometer + Prometheus + OpenTelemetry (per-route KPIs & solver stats)

โ—พ Optimization loop (fast & practical)

Build problem: vehicles, jobs, time windows, distances from routing graph

Seed solution: nearest-neighbor / sweep / savings heuristic

Publish: assign routes; stream ETAs to ops & drivers

React: when traffic or delays hit โ†’ incremental re-optimize affected region only

โ—พ Real-time realities (what actually works)

โ—พ Rolling horizon: lock near-term stops, optimize the tail โ€” drivers donโ€™t like teleporting routes

โ—พ Regional shards: city or depot partitions keep solve times predictable

โ—พ SLA safety: deadline guardrails override โ€œshortest pathโ€ when needed

โ—พ What-if: sandbox a copy of live data for planners (no impact on drivers)

โ—พ Latency targets

โ—พ Small batch (โ‰ค200 stops/depot) initial plan: < 20โ€“60s

โ—พ Incremental re-plan (spill, traffic, no-show): < 2โ€“5s

โ—พ ETA refresh pipeline end-to-end: < 1s

Keep the UI streaming partial results โ€” progress beats silence.

โ—พ Java tuning cheatsheet

โ—พ Java 21 virtual threads around IO (maps, DB, telemetry)

โ—พ G1/ZGC with small regions; avoid large object churn in scorers

โ—พ Precompute time-dependent travel times; avoid calling routing server inside inner loops

โ—พ โ€œPlanner overrides neededโ€ โ€” should trend down as the system learns

โ—พ Rollout in 4 sprints

Static nightly plans + live ETA dashboard

Mid-day incremental re-opt (traffic/incidents)

Driver app hooks (ack, proof-of-delivery) + SLA penalties in score

Multi-depot balancing, what-if simulator, cost/COโ‚‚ optimization

Takeaway

Great logistics isnโ€™t โ€œsolve once.โ€

Itโ€™s a Java loop that senses, decides, and adapts โ€” all day, every day.

Top comments (0)