๐ Part 4: Creating the LangChain Pipeline
In this part, weโll build the LangChain-powered backend pipeline that connects your chatbot to MongoDB and Pinecone, handles data chunking, generates embeddings, and retrieves relevant responses.
โ What We'll Cover
- Setting up document loading from MongoDB
- Splitting order data into chunks
- Creating embeddings from chunks
- Storing vectors in Pinecone
- Retrieving relevant chunks for user queries
๐งฑ 1. Load Data from MongoDB
Weโll load order data to feed into LangChain's document processing tools.
// backend/langchain/loadOrders.js
const { connectToDatabase } = require('../database/connection');
async function loadOrderDocuments() {
const db = await connectToDatabase();
const orders = await db.collection('orders').find().toArray();
return orders.map(order => ({
pageContent: `
Order ID: ${order.orderId}
Customer: ${order.customerName}
Email: ${order.email}
Items: ${order.items.map(i => \`\${i.productName} x\${i.quantity}\`).join(', ')}
Total: $\${order.totalAmount}
Status: \${order.status}
Date: \${order.orderDate.toDateString()}
`,
metadata: { orderId: order.orderId },
}));
}
module.exports = { loadOrderDocuments };
โ๏ธ 2. Split Data into Chunks
We use LangChain's text splitter to break content into manageable pieces.
// backend/langchain/splitter.js
const { RecursiveCharacterTextSplitter } = require('@langchain/community/text_splitter');
async function splitDocuments(documents) {
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 50,
});
return await splitter.splitDocuments(documents);
}
module.exports = { splitDocuments };
๐ 3. Embed & Store in Pinecone
Now weโll process and store the chunks as vectors.
// backend/langchain/storeChunks.js
const { OpenAIEmbeddings } = require('@langchain/openai');
const { PineconeStore } = require('@langchain/pinecone');
const { initPinecone } = require('./config');
async function storeChunksInPinecone(chunks) {
const embeddings = new OpenAIEmbeddings({
openAIApiKey: process.env.OPENAI_API_KEY,
});
const pinecone = await initPinecone();
const index = pinecone.Index("ecommerce-orders");
await PineconeStore.fromDocuments(chunks, embeddings, {
pineconeIndex: index,
});
console.log("Chunks stored in Pinecone.");
}
module.exports = { storeChunksInPinecone };
๐งช 4. Pipeline Runner
Letโs put it all together:
// backend/langchain/pipeline.js
const { loadOrderDocuments } = require('./loadOrders');
const { splitDocuments } = require('./splitter');
const { storeChunksInPinecone } = require('./storeChunks');
async function runLangChainPipeline() {
const docs = await loadOrderDocuments();
const chunks = await splitDocuments(docs);
await storeChunksInPinecone(chunks);
}
runLangChainPipeline();
Run the pipeline:
node backend/langchain/pipeline.js
โ Next Steps (Part 5)
In the next part, we will:
- Design prompt templates for order-related queries
- Handle multi-turn conversations
- Implement memory using LangChain for context retention
๐ Stay tuned for Part 5: Designing Conversational Logic!
Top comments (0)