DEV Community

RajeevaChandra
RajeevaChandra

Posted on

๐Ÿš€ ๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐ง๐  ๐Ž๐ฉ๐ž๐ง๐€๐ˆโ€™๐ฌ ๐‚๐ก๐š๐ญ๐Š๐ข๐ญ ๐ฐ๐ข๐ญ๐ก ๐…๐š๐ฌ๐ญ๐€๐๐ˆ: ๐€ ๐๐ซ๐š๐œ๐ญ๐ข๐œ๐š๐ฅ ๐†๐ฎ๐ข๐๐ž ๐ญ๐จ ๐๐ฎ๐ข๐ฅ๐๐ข๐ง๐  ๐Œ๐จ๐๐ž๐ซ๐ง ๐‚๐ก๐š๐ญ ๐€๐ ๐ž๐ง๐ญ๐ฌ

OpenAI unveiled a major update during Dev Day yesterday (Oct 6), introducing a new suite of tools to make building and deploying AI agents much easier.

โœจ Whatโ€™s New:

๐Ÿง  The launch includes AgentKit, which gives developers and business users the ability to build, deploy, and optimize agentic AI systems, and ChatKit, a framework for creating rich chat experiences without reinventing the UI layer.

๐Ÿ’ฌ ChatKit lets you embed a production-ready chat interface into your app or website with support for file uploads, tool invocation, and chain-of-thought visualization โ€” all within minutes.

Together, AgentKit and ChatKit bridge the gap between agent logic and user interaction, making it simpler to bring real AI agents into production products.

๐Ÿ’ก ๐“๐ฐ๐จ ๐–๐š๐ฒ๐ฌ ๐ญ๐จ ๐”๐ฌ๐ž ๐‚๐ก๐š๐ญ๐Š๐ข๐ญ::

According to OpenAIโ€™s documentation, ChatKit can be integrated in two ways:
1๏ธโƒฃ ๐‘๐ž๐œ๐จ๐ฆ๐ฆ๐ž๐ง๐๐ž๐ ๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง:
Let OpenAI host and scale everything โ€” you embed the ChatKit widget in your frontend and connect it to an OpenAI Agent Builder backend.
2๏ธโƒฃ ๐€๐๐ฏ๐š๐ง๐œ๐ž๐ ๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง:
Host ChatKit on your own infrastructure, use the ChatKit SDK, and connect it to any backend or model endpoint.

๐Ÿงฑ What I Built
I implemented the Advanced Integration version โ€” a self-hosted Chat Framework combining:
โ— ๐‚๐ก๐š๐ญ๐Š๐ข๐ญ ๐”๐ˆ (๐…๐ซ๐จ๐ง๐ญ๐ž๐ง๐): A modern React + Next.js interface built with ChatKit components. Supports message history, placeholders, and full customization.
โ— ๐…๐š๐ฌ๐ญ๐€๐๐ˆ (๐๐š๐œ๐ค๐ž๐ง๐): A lightweight layer exposing /api/chat and /health endpoints. Handles message serialization, temperature control, and integrates with any OpenAI-compatible API.
โ— ๐‚๐จ๐ง๐Ÿ๐ข๐ ๐ฎ๐ซ๐š๐›๐ฅ๐ž ๐Œ๐จ๐๐ž๐ฅ ๐„๐ง๐๐ฉ๐จ๐ข๐ง๐ญ: Flexible backend integration for connecting to any model API or agent orchestration layer.

This setup delivers the same smooth ChatKit experience โ€” but entirely under developer control. Itโ€™s modular, lightweight, and can easily connect to private APIs, enterprise systems, or custom agent tools.

โš™๏ธ How It Works

Navigation Flow

โœ… The ChatKit UI sends messages to my FastAPI backend.
โœ… The backend processes, formats, and forwards them to the model API.
โœ… The response is returned to the UI and rendered instantly in the chat view.
โœ…All data flow follows the OpenAI Chat Completions schema, so itโ€™s plug-and-play with any model or agent backend.

For those whoโ€™d like to explore the setup, Iโ€™ve published the full implementation here:
https://lnkd.in/eCvN8mjh

Top comments (0)