🔥 1. AI for Proxy Development (Practical Examples)
1.1 Generate a Full API Proxy From an OpenAPI Specification
Prompt to give ChatGPT / Copilot
“Convert this OpenAPI spec into an Apigee proxy with:
- OAuth 2.0
- SpikeArrest 10ps
- AssignMessage to transform backend response
- RaiseFault for missing token Generate the full proxy bundle structure.”
What AI generates for you
1. ProxyEndpoint/default.xml
<ProxyEndpoint name="default">
<PreFlow>
<Request>
<Step>
<Name>OAuth-v20-VerifyAccessToken</Name>
</Step>
<Step>
<Name>SA-RateLimit</Name>
</Step>
<Step>
<Name>RF-MissingToken</Name>
<Condition>request.header.Authorization = ""</Condition>
</Step>
</Request>
</PreFlow>
<Flows/>
<PostFlow/>
<TargetEndpoint>default</TargetEndpoint>
</ProxyEndpoint>
2. SpikeArrest Policy
<SpikeArrest name="SA-RateLimit">
<Rate>10ps</Rate>
</SpikeArrest>
3. RaiseFault Policy
<RaiseFault name="RF-MissingToken">
<FaultResponse>
<Set>
<Payload contentType="application/json">
{"error":"missing access token"}
</Payload>
</Set>
</FaultResponse>
</RaiseFault>
AI outputs the whole proxy so you don’t spend 1–2 hours stitching files manually.
🔧 2. AI for Writing Complex Conditions (Practical Examples)
Real-world example
You need to execute a policy only when:
- Request path is
/v1/cards - Method is POST
-
x-app-idheader is missing - Query param
regionis not “IN”
Prompt
“Generate an Apigee condition for:
POST + /v1/cards + missing x-app-id header + region != IN”
AI Output
<Condition>
(request.verb = "POST")
and (proxy.pathsuffix MatchesPath "/v1/cards")
and (request.header.x-app-id = "")
and (request.queryparam.region != "IN")
</Condition>
This replaces 10–15 minutes of error-prone manual writing.
🧩 3. AI for Debugging API Proxies (Production-Grade Examples)
3.1 Debugging SpikeArrest Failure (Real Trace)
Scenario
A customer reports:
“Spike arrest is blocking even though calls are below the limit.”
What you do
Upload your Apigee trace screenshot to ChatGPT Vision.
AI Immediate Diagnosis Example
“Your SpikeArrest is in PreFlow.
Because OAuth is failing upstream, retries hit the proxy again
causing the global rate to exceed the threshold.
Move SpikeArrest after OAuth and apply a per-client rate instead.”
Corrected SpikeArrest
<SpikeArrest name="SA-Client">
<Rate>5ps</Rate>
<Identifier ref="request.header.client_id"/>
</SpikeArrest>
3.2 Debugging Misrouted Traffic
Scenario
A TargetEndpoint routing issue causes all flows to hit the default backend.
Prompt
“Here is my default.xml. Why is routing not happening?”
AI Finds the Bug
The condition had a typo:
/v1/payment* (wrong) → /v1/payments/* (correct)
AI explains:
- Condition never matched
- So the flow never executed
- Traffic went to default target
This is something human reviewers often miss.
🔐 4. AI for Security Hardening (Straight From Real Apigee Audits)
4.1 Identifying Missing Security Policies
Upload your proxy bundle and ask:
“Audit this Apigee proxy for missing security checks.”
AI instantly highlights
❌ No ThreatProtection policy
❌ OAuth token is not validated in PreFlow
❌ No regex-based input validation
❌ No masking of sensitive fields
❌ No anti-JSON injection checks
AI Suggested Security Add-ons
Threat Protection
<JSONThreatProtection name="JP-TP">
<MaximumArrayElementCount>500</MaximumArrayElementCount>
<MaximumContainerDepth>30</MaximumContainerDepth>
</JSONThreatProtection>
Mask credit card details
<AssignMessage name="AM-Mask">
<Set>
<Payload>
{"card":"**** **** **** " + substring(request.card,12,16)}
</Payload>
</Set>
</AssignMessage>
This turns your API into a security-compliant proxy without guesswork.
📊 5. AI for Analytics Insights (Real Business Example)
Scenario: Unexpected Latency Spikes at 3 PM Daily
Download 1 day of Apigee analytics CSV → paste into ChatGPT.
AI Conclusion
- Latency peaks between 3:00–3:30 PM
- Common backend:
/v2/orders - Backend latency jumped from 220ms to 890ms
- Cause: a downstream database batch job running at 3 PM
-
Recommendation:
- Use ConcurrentRatelimit
- Add Caching for non-sensitive GET calls
New Cache Policy AI Generated
<ResponseCache name="RC-Orders">
<CacheKey>
<KeyFragment>request.queryparam.orderId</KeyFragment>
</CacheKey>
<ExpirySettings>
<TimeoutInSeconds>120</TimeoutInSeconds>
</ExpirySettings>
</ResponseCache>
Production stability improves immediately.
🏗️ 6. AI for CI/CD Automation (Practical Pipeline Example)
Prompt
“Generate a GitHub Actions pipeline to lint and deploy Apigee proxies to non-prod.”
AI Generates This:
name: Deploy Apigee Proxy
on:
push:
branches: [ "main" ]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout Repo
uses: actions/checkout@v3
- name: Lint Proxy
run: |
apigeelint -f html -o lint-report.html
- name: Deploy to Apigee
run: |
apigeetool deployproxy \
-u ${{ secrets.USER }} \
-p ${{ secrets.PASS }} \
-o my-org \
-e test \
-n orders-api \
-d ./bundle
Perfect pipeline.
Minimal effort.
Developer time saved: 2–3 hours.
🩺 7. AI-Assisted Trace Analysis (Real Debug Example)
Scenario
Payment API failing with:
fault: access_token_invalid
You upload a trace screenshot.
AI Explanation
- OAuth policy placed in PostFlow, not PreFlow
- Token validation happens too late
- Response headers are overwritten by RaiseFault
- Fix: Move OAuth to PreFlow and remove redundant AM policy
Correct placement
<PreFlow>
<Request>
<Step><Name>VerifyOAuth2</Name></Step>
</Request>
</PreFlow>
This eliminates a full day of manual debugging.
🤖 8. AI for Self-Healing API Layers
Scenario: Backend Is Down
Your API shouldn’t fail badly.
AI can generate:
- Dynamic fallback routing
- Circuit breaker logic
- Automatic switchover flows
AI Generated Flow Example
<Flow name="fallback">
<Condition>target.copy.status = "503"</Condition>
<Request><Step><Name>AM-SwitchToBackup</Name></Step></Request>
</Flow>
AssignMessage for Backup
<AssignMessage name="AM-SwitchToBackup">
<Set>
<TargetEndpoint>backup-service</TargetEndpoint>
</Set>
</AssignMessage>
Your API “self-heals” in real time.
Top comments (0)