This document explains how to build an AI Image Enhancer feature page using:
- Frontend: React (file upload + preview)
- Backend: Python + FastAPI
- AI Model: Gemini Nano Banana (vision-capable)
-
Features:
- Image quality enhancement
- Noise reduction
- Color correction
- Sharpness improve
- Background clean
- AI-style cleanup or “smart enhance”
The goal is to give a clear, production-ready implementation idea.
1. System Architecture
[React Frontend]
↓ Upload image (JPEG/PNG/WebP)
[FastAPI Backend]
↓ Convert to bytes → Preprocess
[Gemini Nano Banana Vision Model]
↓ Enhanced image bytes
[Frontend Preview & Download]
2. Core Feature: Image Enhancement
The system should support one main API:
POST /api/image/enhance
Enhancement modes (optional):
-
"quality"– improve clarity, reduce blur -
"denoise"– remove grain/noise -
"color"– color correction -
"sharp"– sharpen image -
"auto"– fully automatic enhancement
3. Frontend Implementation (React)
3.1 Key UI Components
- File uploader (drag & drop)
- Preview original image
- Enhancement mode selector
- “Enhance Image” button
- Preview enhanced output
- Download button
3.2 Frontend React Code Example
import { useState } from "react";
export default function ImageEnhancer() {
const [image, setImage] = useState(null);
const [mode, setMode] = useState("auto");
const [resultUrl, setResultUrl] = useState(null);
const [loading, setLoading] = useState(false);
function handleFileChange(e) {
setImage(e.target.files[0]);
}
async function enhance() {
if (!image) return alert("Please upload an image first.");
setLoading(true);
const form = new FormData();
form.append("file", image);
form.append("mode", mode);
const res = await fetch("/api/image/enhance", { method: "POST", body: form });
const blob = await res.blob();
setResultUrl(URL.createObjectURL(blob));
setLoading(false);
}
return (
<div className="app">
<input type="file" accept="image/*" onChange={handleFileChange} />
<select value={mode} onChange={e => setMode(e.target.value)}>
<option value="auto">Auto Enhance</option>
<option value="quality">Improve Quality</option>
<option value="denoise">Noise Reduction</option>
<option value="color">Color Enhance</option>
<option value="sharp">Sharpen</option>
</select>
<button onClick={enhance} disabled={loading}>
{loading ? "Enhancing..." : "Enhance Image"}
</button>
<div className="preview">
{resultUrl && <img src={resultUrl} alt="enhanced" />}
</div>
</div>
);
}
Frontend responsibilities
| Task | Description |
|---|---|
| Upload image | File input |
| Send FormData to backend | POST file |
| Render enhanced image | Blob preview |
| Allow user to download | Blob URL |
4. Backend Implementation (Python + FastAPI)
Directory structure:
backend/
main.py
enhancer/
image_modes.py
banana_client.py
image_utils.py
4.1 Install Dependencies
pip install fastapi uvicorn python-multipart google-generativeai pillow
Pillow = image processing utils.
4.2 Enhancement Mode Definitions
enhancer/image_modes.py
IMAGE_MODES = {
"auto": "Enhance the image in all aspects.",
"quality": "Improve image quality and resolution.",
"denoise": "Reduce noise and clean artifacts.",
"color": "Improve brightness, contrast and color balance.",
"sharp": "Increase clarity and sharpness.",
}
4.3 Image Preprocessing Utilities
enhancer/image_utils.py
from PIL import Image
import io
def read_image_bytes(file):
return file.read()
def load_image_as_pil(bytes_data):
return Image.open(io.BytesIO(bytes_data))
def to_bytes(pil_img, format="PNG"):
output = io.BytesIO()
pil_img.save(output, format=format)
return output.getvalue()
4.4 Gemini Nano Banana Vision Client
enhancer/banana_client.py
import google.generativeai as genai
from .image_modes import IMAGE_MODES
genai.configure(api_key="YOUR_API_KEY")
model = genai.GenerativeModel("gemini-nano-banana")
async def enhance_image_with_ai(img_bytes: bytes, mode: str):
instruction = IMAGE_MODES.get(mode, IMAGE_MODES["auto"])
response = model.generate_content(
contents=[
{"role": "user", "parts": [
{"mime_type": "image/png", "data": img_bytes},
{"text": instruction}
]}
]
)
enhanced_img = response.parts[0].data
return enhanced_img
This API uses:
-
image/pngblob input - Natural language instruction
- Output image bytes returned as model result
4.5 FastAPI Endpoint
main.py
from fastapi import FastAPI, File, Form, UploadFile, Response
from enhancer.banana_client import enhance_image_with_ai
from enhancer.image_utils import read_image_bytes
app = FastAPI()
@app.post("/api/image/enhance")
async def enhance_image(
file: UploadFile = File(...),
mode: str = Form("auto")
):
img_bytes = read_image_bytes(file.file)
result_bytes = await enhance_image_with_ai(img_bytes, mode)
return Response(content=result_bytes, media_type="image/png")
5. End-to-End Flow
React
→ Upload image
→ POST /api/image/enhance
FastAPI
→ Convert image to bytes
→ Build instruction
→ Call Gemini Nano Banana
→ Receive enhanced image
→ Return PNG
React
→ Render enhanced preview
→ Allow download
6. Error Handling Strategy
1. No file uploaded
if file is None:
raise HTTPException(400, "Image file is required")
2. Unsupported format
Use PIL to check format.
3. Model timeout or API failure
try:
result = await enhance_image_with_ai(...)
except Exception as e:
raise HTTPException(500, f"Model error: {str(e)}")
7. Optimization Strategy
1. Compress oversized images (faster inference)
Resize to max 2048px for performance.
2. Cached responses
Hash image + mode → return cached enhanced version.
3. Use streaming output (optional future feature)
Let frontend show progress.
4. GPU acceleration
If running locally, use GPU-optimized inference.
8. Conclusion
This guide provides a complete, real-world implementation plan for an AI Enhancer, including:
- Full frontend React workflow
- Full backend Python FastAPI code
- Image preprocessing
- Integration with Gemini Nano Banana vision model
- Mode management
- Output handling
- Error + performance strategies
Top comments (0)