DEV Community

Cover image for AI Image Enhancer – Full Technical Implementation Guide
Steven Wang
Steven Wang

Posted on

AI Image Enhancer – Full Technical Implementation Guide

This document explains how to build an AI Image Enhancer feature page using:

  • Frontend: React (file upload + preview)
  • Backend: Python + FastAPI
  • AI Model: Gemini Nano Banana (vision-capable)
  • Features:

    • Image quality enhancement
    • Noise reduction
    • Color correction
    • Sharpness improve
    • Background clean
    • AI-style cleanup or “smart enhance”

The goal is to give a clear, production-ready implementation idea.


1. System Architecture

[React Frontend]
  ↓ Upload image (JPEG/PNG/WebP)
[FastAPI Backend]
  ↓ Convert to bytes → Preprocess
[Gemini Nano Banana Vision Model]
  ↓ Enhanced image bytes
[Frontend Preview & Download]
Enter fullscreen mode Exit fullscreen mode

2. Core Feature: Image Enhancement

The system should support one main API:

POST /api/image/enhance
Enter fullscreen mode Exit fullscreen mode

Enhancement modes (optional):

  • "quality" – improve clarity, reduce blur
  • "denoise" – remove grain/noise
  • "color" – color correction
  • "sharp" – sharpen image
  • "auto" – fully automatic enhancement

3. Frontend Implementation (React)

3.1 Key UI Components

  • File uploader (drag & drop)
  • Preview original image
  • Enhancement mode selector
  • “Enhance Image” button
  • Preview enhanced output
  • Download button

3.2 Frontend React Code Example

import { useState } from "react";

export default function ImageEnhancer() {
  const [image, setImage] = useState(null);
  const [mode, setMode] = useState("auto");
  const [resultUrl, setResultUrl] = useState(null);
  const [loading, setLoading] = useState(false);

  function handleFileChange(e) {
    setImage(e.target.files[0]);
  }

  async function enhance() {
    if (!image) return alert("Please upload an image first.");
    setLoading(true);

    const form = new FormData();
    form.append("file", image);
    form.append("mode", mode);

    const res = await fetch("/api/image/enhance", { method: "POST", body: form });
    const blob = await res.blob();
    setResultUrl(URL.createObjectURL(blob));
    setLoading(false);
  }

  return (
    <div className="app">
      <input type="file" accept="image/*" onChange={handleFileChange} />

      <select value={mode} onChange={e => setMode(e.target.value)}>
        <option value="auto">Auto Enhance</option>
        <option value="quality">Improve Quality</option>
        <option value="denoise">Noise Reduction</option>
        <option value="color">Color Enhance</option>
        <option value="sharp">Sharpen</option>
      </select>

      <button onClick={enhance} disabled={loading}>
        {loading ? "Enhancing..." : "Enhance Image"}
      </button>

      <div className="preview">
        {resultUrl && <img src={resultUrl} alt="enhanced" />}
      </div>
    </div>
  );
}
Enter fullscreen mode Exit fullscreen mode

Frontend responsibilities

Task Description
Upload image File input
Send FormData to backend POST file
Render enhanced image Blob preview
Allow user to download Blob URL

4. Backend Implementation (Python + FastAPI)

Directory structure:

backend/
  main.py
  enhancer/
      image_modes.py
      banana_client.py
      image_utils.py
Enter fullscreen mode Exit fullscreen mode

4.1 Install Dependencies

pip install fastapi uvicorn python-multipart google-generativeai pillow
Enter fullscreen mode Exit fullscreen mode

Pillow = image processing utils.


4.2 Enhancement Mode Definitions

enhancer/image_modes.py

IMAGE_MODES = {
    "auto": "Enhance the image in all aspects.",
    "quality": "Improve image quality and resolution.",
    "denoise": "Reduce noise and clean artifacts.",
    "color": "Improve brightness, contrast and color balance.",
    "sharp": "Increase clarity and sharpness.",
}
Enter fullscreen mode Exit fullscreen mode

4.3 Image Preprocessing Utilities

enhancer/image_utils.py

from PIL import Image
import io

def read_image_bytes(file):
    return file.read()

def load_image_as_pil(bytes_data):
    return Image.open(io.BytesIO(bytes_data))

def to_bytes(pil_img, format="PNG"):
    output = io.BytesIO()
    pil_img.save(output, format=format)
    return output.getvalue()
Enter fullscreen mode Exit fullscreen mode

4.4 Gemini Nano Banana Vision Client

enhancer/banana_client.py

import google.generativeai as genai
from .image_modes import IMAGE_MODES

genai.configure(api_key="YOUR_API_KEY")

model = genai.GenerativeModel("gemini-nano-banana")

async def enhance_image_with_ai(img_bytes: bytes, mode: str):
    instruction = IMAGE_MODES.get(mode, IMAGE_MODES["auto"])

    response = model.generate_content(
        contents=[
            {"role": "user", "parts": [
                {"mime_type": "image/png", "data": img_bytes},
                {"text": instruction}
            ]}
        ]
    )

    enhanced_img = response.parts[0].data
    return enhanced_img
Enter fullscreen mode Exit fullscreen mode

This API uses:

  • image/png blob input
  • Natural language instruction
  • Output image bytes returned as model result

4.5 FastAPI Endpoint

main.py

from fastapi import FastAPI, File, Form, UploadFile, Response
from enhancer.banana_client import enhance_image_with_ai
from enhancer.image_utils import read_image_bytes

app = FastAPI()

@app.post("/api/image/enhance")
async def enhance_image(
    file: UploadFile = File(...),
    mode: str = Form("auto")
):
    img_bytes = read_image_bytes(file.file)
    result_bytes = await enhance_image_with_ai(img_bytes, mode)

    return Response(content=result_bytes, media_type="image/png")
Enter fullscreen mode Exit fullscreen mode

5. End-to-End Flow

React  
 → Upload image  
 → POST /api/image/enhance  
FastAPI  
 → Convert image to bytes  
 → Build instruction  
 → Call Gemini Nano Banana  
 → Receive enhanced image  
 → Return PNG  
React  
 → Render enhanced preview  
 → Allow download
Enter fullscreen mode Exit fullscreen mode

6. Error Handling Strategy

1. No file uploaded

if file is None:
    raise HTTPException(400, "Image file is required")
Enter fullscreen mode Exit fullscreen mode

2. Unsupported format

Use PIL to check format.

3. Model timeout or API failure

try:
    result = await enhance_image_with_ai(...)
except Exception as e:
    raise HTTPException(500, f"Model error: {str(e)}")
Enter fullscreen mode Exit fullscreen mode

7. Optimization Strategy

1. Compress oversized images (faster inference)

Resize to max 2048px for performance.

2. Cached responses

Hash image + mode → return cached enhanced version.

3. Use streaming output (optional future feature)

Let frontend show progress.

4. GPU acceleration

If running locally, use GPU-optimized inference.


8. Conclusion

This guide provides a complete, real-world implementation plan for an AI Enhancer, including:

  • Full frontend React workflow
  • Full backend Python FastAPI code
  • Image preprocessing
  • Integration with Gemini Nano Banana vision model
  • Mode management
  • Output handling
  • Error + performance strategies

Top comments (0)