DEV Community

Ed Legaspi
Ed Legaspi

Posted on • Originally published at czetsuyatech.com

Hands-On Coding: Exploring Hyperparameters for Programmers

Introduction

In this article, we will explore different techniques for finding the optimal hyperparameter values from a given set of parameters in a grid. Particularly we will look at RandomizedSearchCV, GridSearchCV, and BayesSearchCV.

In this blog you will learn:

  • How to initialize the parameter grid.
  • How to find the optimal hyperparameters based on a given technique.
  • How to build a model (XGBClassifier) to use the hyperparameters.
  • How to score the performance of the model.

RandomizedSearchCV

param_grid = {
    "gamma": [0, 0.1, 0.2, 0.5, 1, 1.5, 2, 3, 6, 12, 20],
    "learning_rate": [0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8],
    "max_depth": [1, 2, 3, 4, 5, 6, 8, 12],
    "n_estimators": [25, 50, 65, 80, 100, 115, 200]
}

grid_search = RandomizedSearchCV(estimator=classifier_0, param_distributions=param_grid, scoring=scoring)
Enter fullscreen mode Exit fullscreen mode

GridSearchCV

param_grid = {
    "gamma": [0, 0.1, 0.2, 0.5, 1, 1.5, 2, 3, 6, 12, 20],
    "learning_rate": [0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8],
    "max_depth": [2, 3, 4, 5, 6, 8, 12],
    "n_estimators": [25, 50, 65, 80, 100, 115, 200]
}

grid_search = GridSearchCV(estimator=classifier_0, param_grid=param_grid, scoring=scoring)
Enter fullscreen mode Exit fullscreen mode

BayesSearchCV

param_bayes = {
    'gamma': Categorical(param_grid['gamma']),
    'learning_rate': Categorical(param_grid['learning_rate']),
    'max_depth': Categorical(param_grid['max_depth']),
    'n_estimators': Categorical(param_grid['n_estimators'])
}

grid_search = BayesSearchCV(estimator=classifier_0, search_spaces=param_bayes, scoring=scoring, n_jobs=-1, cv=10)
Enter fullscreen mode Exit fullscreen mode

Finding the Best HyperParameters

best_model = grid_search.fit(X_train, y_train)
hyperparams = best_model.best_params_
Enter fullscreen mode Exit fullscreen mode

Building and Scoring the Classifier using the HyperParameters

# Fitting the Model
ne = hyperparams['n_estimators']
lr = hyperparams['learning_rate']
md = hyperparams['max_depth']
gm = hyperparams['gamma']
print("Recommended Params >>", f"ne: {ne},", f"lr: {lr}", f"md: {md}", f"gm: {gm}")

# Build Classification Model
classifier_1 = XGBClassifier(
    base_score=0.5,
    colsample_bylevel=1,
    colsample_bynode=1,
    objective=objective,
    booster="gbtree",
    eval_metric=eval_metric_list,
    n_estimators=ne,
    learning_rate=lr,
    max_depth=md,
    gamma=gm,
    subsample=0.8,
    colsample_bytree=1,
    random_state=1
)

# Fit Model
eval_set = [(X_train, y_train)]
classifier_1.fit(
    X_train,
    y_train,
    eval_set=eval_set,
    verbose=False
)

# Get predictions for training data
train_yhat = classifier_1.predict(X_train)
print("Training Preds: \n", train_yhat[:5])

# Set K-Fold Cross Validation Levels
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=1)

# Training Results
train_results = cross_val_score(classifier_1, X_train, y_train, scoring=scoring, cv=cv, n_jobs=1)

# Brief Review of Training Results
print("Average Accuracy K-Fold: ", round(train_results.mean(), 2))
print("Std Deviation K-Fold: ", round(train_results.std(), 2))
print("Precision Score 0: ", round(precision_score(y_train, train_yhat, average=None)[0], 3))
print("Precision Score 1: ", round(precision_score(y_train, train_yhat, average=None)[1], 3))
Enter fullscreen mode Exit fullscreen mode

Performance

Machine: Laptop
Processor: AMD Ryzen 7
OS: Windows
DataFrame Shape: (7282, 17)

Image description

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay