With the rise of ๐ค Edge AI ึ๐ฆ๐ฎ and TinyML 2.0, the idea of running deep learning ึ models on ultra-low-cost microcontrollers ๐๏ธ is no longer ๐ก science fiction โก.
Hello Dev family! ๐
This is ๐ Hemant Katta ๐
In this post ๐, Iโll walk you through how I managed to deploy a stripped-down Transformer model ๐ค on a microcontroller ๐๏ธ that costs less than $5 โ and why this is a huge leap forward for real-world ๐, offline intelligence ๐ก.
๐ Why Transformers at the Edge โ๏ธ
Transformers have revolutionized natural language processing, but their architecture is traditionally resource-intensive. Thanks to innovations in quantization โพ, pruning, and efficient attention mechanisms โ๏ธ, it's now feasible to run a scaled-down version on an MCU ๐๏ธ.
Imagine running a keyword classifier or intent recognizer without needing the internet. Thatโs Edge AI magic. โจ
๐ ๏ธ Hardware & Tools Used :
Component ๐ | Details ๐ |
---|---|
Microcontroller ๐๏ธ | STM32F746 Discovery Board (~$5) |
Framework ๐งฉ | TensorFlow Lite for Microcontrollers |
Model Type ๐ค | Tiny Transformer (4-head, 2-layer) |
Optimization | Post-training quantization (int8) |
โ๏ธ Toolchain ๐ ๏ธ | STM32CubeIDE + X-CUBE-AI + Makefile |
โ๏ธ Preparing the Model :
We used a distilled transformer ๐ค trained on a small dataset (e.g., short commands) in TensorFlow/Keras:
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, MultiHeadAttention, Dense, LayerNormalization
from tensorflow.keras.models import Model
inputs = Input(shape=(10,), dtype='int32')
x = Embedding(input_dim=1000, output_dim=64)(inputs)
x = MultiHeadAttention(num_heads=2, key_dim=64)(x, x)
x = LayerNormalization()(x)
x = Dense(64, activation='relu')(x)
x = Dense(4, activation='softmax')(x) # 4 commands
model = Model(inputs, x)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
Then, convert it to TensorFlow Lite with quantization:
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
quantized_model = converter.convert()
with open("transformer_model.tflite", "wb") as f:
f.write(quantized_model)
๐ Deploying on STM32 :
Use STM32Cube.AI to convert the .tflite model ๐ค to C source files:
Open STM32CubeMX.
Go to X-CUBE-AI menu.
Import transformer_model.tflite.
Generate project + code.
In your main.c :
#include "ai_model.h"
#include "ai_model_data.h"
// Inference function
void run_inference() {
ai_buffer input[1];
ai_buffer output[1];
// Set pointers to input and output tensors
input[0].data = input_data;
output[0].data = output_data;
ai_model_run(model_handle, input, output);
// Use output_data for decision-making
}
We can now run real-time inference at the edge! ๐ฅ
๐ก Bonus: TinyML + LoRa
Want to send inference results wirelessly? Pair with a LoRa SX1278 module:
// Arduino sketch
LoRa.begin(433E6);
LoRa.beginPacket();
LoRa.print("Intent: ");
LoRa.print(output_data[0]);
LoRa.endPacket();
Low power + wireless + no cloud = perfect for smart agriculture ๐ฑ, rural automation ๐ค , or ๐ disaster monitoring โ ๏ธ.
๐ฏ Conclusion :
Running a ๐ค GPT-style model on a $5 MCU is no โ longer a dream ๐ญ. With TinyML 2.0, AI ๐ค is becoming affordable ๐ต, private ๐, and ubiquitous ๐ง. This opens new frontiers in edge intelligence ๐ค for smart homes ๐ก, wearables โ, agriculture ๐ฑ, and much moreยทยทยทยทยทยทยทยทยท
#TinyML #EdgeAI #STM32 #TensorFlowLite #Transformers #LoRa #IoT #AIoT #Microcontrollers #EmbeddedAI #DEVCommunity
๐ข Stay tuned ๐ for a follow-up where weโll deep-dive into attention ๐จ optimizations and on-device ๐ค learning.
Feel free ๐ to share your own insights ๐ก. Let's build a knowledge-sharing hub. Happy coding! ๐ปโจ.
Top comments (0)