DEV Community

Cover image for Running ๐Ÿค– GPT-Style Transformers on a $5 Microcontroller ๐ŸŽ›๏ธ (TinyML 2.0 Era)
Hemant
Hemant

Posted on

Running ๐Ÿค– GPT-Style Transformers on a $5 Microcontroller ๐ŸŽ›๏ธ (TinyML 2.0 Era)

With the rise of ๐Ÿค– Edge AI ึŽ๐Ÿ‡ฆ๐Ÿ‡ฎ and TinyML 2.0, the idea of running deep learning ึŽ models on ultra-low-cost microcontrollers ๐ŸŽ›๏ธ is no longer ๐Ÿ’ก science fiction โšก.

Hello Dev family! ๐Ÿ‘‹

This is ๐Ÿ’– Hemant Katta ๐Ÿ’

In this post ๐Ÿ“œ, Iโ€™ll walk you through how I managed to deploy a stripped-down Transformer model ๐Ÿค– on a microcontroller ๐ŸŽ›๏ธ that costs less than $5 โ€” and why this is a huge leap forward for real-world ๐ŸŒ, offline intelligence ๐Ÿ’ก.

๐Ÿ” Why Transformers at the Edge โ‰๏ธ

Transformers have revolutionized natural language processing, but their architecture is traditionally resource-intensive. Thanks to innovations in quantization โ™พ, pruning, and efficient attention mechanisms โš™๏ธ, it's now feasible to run a scaled-down version on an MCU ๐ŸŽ›๏ธ.

Imagine running a keyword classifier or intent recognizer without needing the internet. Thatโ€™s Edge AI magic. โœจ

๐Ÿ› ๏ธ Hardware & Tools Used :

Component ๐Ÿ“œ Details ๐Ÿ“
Microcontroller ๐ŸŽ›๏ธ STM32F746 Discovery Board (~$5)
Framework ๐Ÿงฉ TensorFlow Lite for Microcontrollers
Model Type ๐Ÿค– Tiny Transformer (4-head, 2-layer)
Optimization Post-training quantization (int8)
โš™๏ธ Toolchain ๐Ÿ› ๏ธ STM32CubeIDE + X-CUBE-AI + Makefile

โš™๏ธ Preparing the Model :

We used a distilled transformer ๐Ÿค– trained on a small dataset (e.g., short commands) in TensorFlow/Keras:

import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, MultiHeadAttention, Dense, LayerNormalization
from tensorflow.keras.models import Model

inputs = Input(shape=(10,), dtype='int32')
x = Embedding(input_dim=1000, output_dim=64)(inputs)
x = MultiHeadAttention(num_heads=2, key_dim=64)(x, x)
x = LayerNormalization()(x)
x = Dense(64, activation='relu')(x)
x = Dense(4, activation='softmax')(x)  # 4 commands
model = Model(inputs, x)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
Enter fullscreen mode Exit fullscreen mode

Then, convert it to TensorFlow Lite with quantization:

converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
quantized_model = converter.convert()

with open("transformer_model.tflite", "wb") as f:
    f.write(quantized_model)
Enter fullscreen mode Exit fullscreen mode

๐Ÿ” Deploying on STM32 :

Use STM32Cube.AI to convert the .tflite model ๐Ÿค– to C source files:

  1. Open STM32CubeMX.

  2. Go to X-CUBE-AI menu.

  3. Import transformer_model.tflite.

  4. Generate project + code.

In your main.c :

#include "ai_model.h"
#include "ai_model_data.h"

// Inference function
void run_inference() {
    ai_buffer input[1];
    ai_buffer output[1];

    // Set pointers to input and output tensors
    input[0].data = input_data;
    output[0].data = output_data;

    ai_model_run(model_handle, input, output);
    // Use output_data for decision-making
}
Enter fullscreen mode Exit fullscreen mode

We can now run real-time inference at the edge! ๐Ÿ”ฅ

๐Ÿ“ก Bonus: TinyML + LoRa

Want to send inference results wirelessly? Pair with a LoRa SX1278 module:

// Arduino sketch
LoRa.begin(433E6);
LoRa.beginPacket();
LoRa.print("Intent: ");
LoRa.print(output_data[0]);
LoRa.endPacket();
Enter fullscreen mode Exit fullscreen mode

Low power + wireless + no cloud = perfect for smart agriculture ๐ŸŒฑ, rural automation ๐Ÿค– , or ๐ŸŒ‹ disaster monitoring โš ๏ธ.

๐ŸŽฏ Conclusion :

Running a ๐Ÿค– GPT-style model on a $5 MCU is no โŒ longer a dream ๐Ÿ’ญ. With TinyML 2.0, AI ๐Ÿค– is becoming affordable ๐Ÿ’ต, private ๐Ÿ”’, and ubiquitous ๐Ÿ–ง. This opens new frontiers in edge intelligence ๐Ÿค– for smart homes ๐Ÿก, wearables โŒš, agriculture ๐ŸŒฑ, and much moreยทยทยทยทยทยทยทยทยท

#TinyML #EdgeAI #STM32 #TensorFlowLite #Transformers #LoRa #IoT #AIoT #Microcontrollers #EmbeddedAI #DEVCommunity
Enter fullscreen mode Exit fullscreen mode

๐Ÿ“ข Stay tuned ๐Ÿ”” for a follow-up where weโ€™ll deep-dive into attention ๐Ÿšจ optimizations and on-device ๐Ÿค– learning.

Deep Learning Fundamentals

Feel free ๐Ÿ˜‡ to share your own insights ๐Ÿ’ก. Let's build a knowledge-sharing hub. Happy coding! ๐Ÿ’ปโœจ.

Top comments (0)