DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

logical_xor and logical_not in PyTorch

Buy Me a Coffee

*My post explains logical_and() and logical_or().

logical_xor() can do logical XOR with two of the 0D or more D tensors of zero or more elements, getting the 0D or more D tensor of zero or more boolean values as shown below:

*Memos:

  • logical_xor() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • Zero is True and nonzero is False.
import torch

tensor1 = torch.tensor(True)
tensor2 = torch.tensor([[True, False, True, False],
                        [False, True, False, True]])
torch.logical_xor(input=tensor1, other=tensor2)
tensor1.logical_xor(other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[False, True, False, True],
#         [True, False, True, False]])

tensor1 = torch.tensor(False)
tensor2 = torch.tensor([[True, False, True, False],
                        [False, True, False, True]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[True, False, True, False],
#         [False, True, False, True]])

tensor1 = torch.tensor([True, False])
tensor2 = torch.tensor([[[True, False], [True, False]],
                        [[False, True], [False, True]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, False]],
#         [[True, True], [True, True]]])

tensor1 = torch.tensor([7, 0])
tensor2 = torch.tensor([[[1, 0], [-1, 0]],
                        [[0, 2], [0, -2]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, False]],
#         [[True, True], [True, True]]])

tensor1 = torch.tensor([7.3, 0.3])
tensor2 = torch.tensor([[[1.3, 0.3], [-1.0, 0.0]],
                        [[0.3, 2.3], [0.0, -2.0]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, True]],
#         [[False, False], [True, False]]])

tensor1 = torch.tensor([7.+3.j, 0.+3.j])
tensor2 = torch.tensor([[[1.+3.j, 0.+3.j], [-1.+0.j, 0.+0.j]],
                        [[0.+3.j, 2.+3.j], [0.+0.j, -2.+0.j]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, True]],
#         [[False, False], [True, False]]])
Enter fullscreen mode Exit fullscreen mode

logical_not() can do logical NOT with the 0D or more D tensor of zero or more elements, getting the 0D or more D tensor of zero or more boolean values as shown below:

*Memos:

  • logical_not() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • Zero is True and nonzero is False.
import torch

my_tensor = torch.tensor(True)

torch.logical_not(input=my_tensor)
my_tensor.logical_not()
# tensor(False)

my_tensor = torch.tensor([True, False, True, False])

torch.logical_not(input=my_tensor)
# tensor([False, True, False, True])

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True]])
torch.logical_not(input=my_tensor)
# tensor([[False, True, False, True],
#         [True, False, True, False]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, True], [False, True]],
#         [[True, False], [True, False]]])

my_tensor = torch.tensor([[[1, 0], [-1, 0]],
                          [[0, 2], [0, -2]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, True], [False, True]],
#         [[True, False], [True, False]]])

my_tensor = torch.tensor([[[1.3, 0.3], [-1.0, 0.0]],
                          [[0.3, 2.3], [0.0, -2.0]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, False], [False, True]],
#         [[False, False], [ True, False]]])

my_tensor  = torch.tensor([[[1.+3.j, 0.+3.j], [-1.+0.j, 0.+0.j]],
                           [[0.+3.j, 2.+3.j], [0.+0.j, -2.+0.j]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, False], [False, True]],
#         [[False, False], [True, False]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Build apps, not infrastructure.

Dealing with servers, hardware, and infrastructure can take up your valuable time. Discover the benefits of Heroku, the PaaS of choice for developers since 2007.

Visit Site

Top comments (0)

Billboard image

Create up to 10 Postgres Databases on Neon's free plan.

If you're starting a new project, Neon has got your databases covered. No credit cards. No trials. No getting in your way.

Try Neon for Free →

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay