DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

SiLU and Softplus in PyTorch

Buy Me a Coffee

*Memos:

SiLU() can get the 0D or more D tensor of the zero or more values computed by SiLU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

silu = nn.SiLU()
silu(input=my_tensor)
# tensor([7.9973, -0.1423, 0.0000, 0.7311, 4.9665, -0.2384, -0.2689, 3.9281])

silu
# SiLU()

silu.inplace
# False

silu = nn.SiLU(inplace=True)
silu(input=my_tensor)
# tensor([7.9973, -0.1423, 0.0000, 0.7311, 4.9665, -0.2384, -0.2689, 3.9281])

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
silu = nn.SiLU()
silu(input=my_tensor)
# tensor([[7.9973, -0.1423, 0.0000, 0.7311],
#         [4.9665, -0.2384, -0.2689, 3.9281]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
silu = nn.SiLU()
silu(input=my_tensor)
# tensor([[[7.9973, -0.1423], [0.0000, 0.7311]],
#         [[4.9665, -0.2384], [-0.2689, 3.9281]]])
Enter fullscreen mode Exit fullscreen mode

Softplus() can get the 0D or more D tensor of the zero or more values computed by Mish function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is beta(Optional-Default:1.0-Type:float). *It's applied to Mish function.
  • The 2nd argument for initialization is threshold(Optional-Default:20.0-Type:float). *The values above it reverted.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

mish = nn.Mish()
mish(input=my_tensor)
# tensor([8.0000, -0.1456, 0.0000, 0.8651, 4.9996, -0.2525, -0.3034, 3.9974])

mish
# Mish()

mish.inplace
# False

mish = nn.Mish(inplace=True)
mish(input=my_tensor)
# tensor([8.0000, -0.1456, 0.0000, 0.8651, 4.9996, -0.2525, -0.3034, 3.9974])

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
mish = nn.Mish()
mish(input=my_tensor)
# tensor([[8.0000, -0.1456, 0.0000, 0.8651],
#         [4.9996, -0.2525, -0.3034, 3.9974]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
mish = nn.Mish()
mish(input=my_tensor)
# tensor([[[8.0000, -0.1456], [0.0000, 0.8651]]
#         [[4.9996, -0.2525], [-0.3034, 3.9974]]])
Enter fullscreen mode Exit fullscreen mode

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay