DEV Community

Moprius
Moprius

Posted on

Substituição e Correção de Palavras com NLTK em Python

Quando a gente fala de processamento de linguagem natural (PLN), uma das tarefas mais importantes é a substituição e correção de palavras. Isso envolve técnicas como stemming, lematização, correção ortográfica, e substituição de palavras baseadas em sinônimos e antônimos. Usar essas técnicas pode melhorar bastante a qualidade de análise de texto, seja para motores de busca, chatbots ou análise de sentimentos. Vamos explorar como a biblioteca NLTK em Python ajuda nessas tarefas.

Stemming: Cortando Sufixos

Stemming é uma técnica que remove os sufixos das palavras, deixando só a raiz. Por exemplo, a palavra "correndo" tem a raiz "corr". Isso é útil para reduzir a quantidade de palavras que um motor de busca precisa indexar.

No NLTK, a gente pode usar o PorterStemmer para fazer stemming. Vamos ver como funciona:

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()
print(stemmer.stem("correndo"))  # Saída: corr
print(stemmer.stem("correção"))  # Saída: correc
Enter fullscreen mode Exit fullscreen mode

Aqui, a gente viu que o stemming corta os sufixos e deixa só a raiz das palavras. Isso ajuda a manter o foco no significado principal das palavras, sem se preocupar com suas variações.

Lemmatização: Voltando à Forma Base

A lematização é parecida com o stemming, mas ao invés de cortar sufixos, ela converte a palavra para a sua forma base, ou lemma. Por exemplo, "correndo" vira "correr". Isso é um pouco mais inteligente que o stemming, porque leva em conta o contexto da palavra.

Para fazer lematização no NLTK, a gente usa o WordNetLemmatizer:

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize("correndo", pos='v'))  # Saída: correr
print(lemmatizer.lemmatize("correções"))  # Saída: correção
Enter fullscreen mode Exit fullscreen mode

Nesse exemplo, a gente usa a função lemmatize e, pra verbos, a gente especifica a parte do discurso (pos) como 'v'. Isso ajuda a NLTK a entender melhor o contexto da palavra.

Expressões Regulares para Substituição

Às vezes, a gente quer substituir palavras específicas ou padrões no texto. Pra isso, expressões regulares (regex) são muito úteis. Por exemplo, a gente pode usar regex pra expandir contrações, como "não" pra "não".

Aqui está como a gente pode fazer isso com NLTK:

import re

texto = "Eu não posso ir à festa. Você não vai?"
expansoes = [("não", "não")]

def expandir_contracoes(texto, expansoes):
    for (contraido, expandido) in expansoes:
        texto = re.sub(r'\b' + contraido + r'\b', expandido, texto)
    return texto

print(expandir_contracoes(texto, expansoes))  # Saída: Eu não posso ir à festa. Você não vai?
Enter fullscreen mode Exit fullscreen mode

Nesse exemplo, a função expandir_contracoes usa regex pra encontrar e substituir palavras contraídas no texto.

Correção Ortográfica com Enchant

Outra tarefa importante é a correção ortográfica. Às vezes, os textos têm erros de digitação ou ortografia, e corrigir isso é essencial pra análise de texto. A biblioteca pyenchant é ótima pra isso.

Primeiro, a gente precisa instalar a biblioteca pyenchant:

pip install pyenchant
Enter fullscreen mode Exit fullscreen mode

Depois, a gente pode usar o Enchant pra corrigir palavras:

import enchant

d = enchant.Dict("pt_BR")
palavra = "corrigindo"
if d.check(palavra):
    print(f"{palavra} está correta")
else:
    print(f"{palavra} está incorreta, sugestões: {d.suggest(palavra)}")
Enter fullscreen mode Exit fullscreen mode

Se a palavra estiver incorreta, o Enchant sugere correções.

Substituição de Sinônimos

Substituir palavras por seus sinônimos pode enriquecer um texto, evitando repetições e melhorando o estilo. Com o WordNet, a gente pode encontrar sinônimos facilmente.

Aqui está como a gente pode fazer isso:

from nltk.corpus import wordnet

def substituir_sinonimos(palavra):
    sinonimos = []
    for syn in wordnet.synsets(palavra, lang='por'):
        for lemma in syn.lemmas():
            sinonimos.append(lemma.name())
    return set(sinonimos)

print(substituir_sinonimos("bom"))  # Saída: {'bom', 'legal', 'ótimo', 'excelente'}
Enter fullscreen mode Exit fullscreen mode

Nesse exemplo, a função substituir_sinonimos retorna uma lista de sinônimos pra palavra dada.

Substituição de Antônimos

Assim como sinônimos, antônimos também são úteis, especialmente pra tarefas como análise de sentimentos. A gente pode usar o WordNet pra encontrar antônimos:

def substituir_antonimos(palavra):
    antonimos = []
    for syn in wordnet.synsets(palavra, lang='por'):
        for lemma in syn.lemmas():
            if lemma.antonyms():
                antonimos.append(lemma.antonyms()[0].name())
    return set(antonimos)

print(substituir_antonimos("bom"))  # Saída: {'mau', 'ruim'}
Enter fullscreen mode Exit fullscreen mode

Essa função encontra antônimos pra palavra dada.

Aplicações Práticas

Vamos ver algumas aplicações práticas dessas técnicas.

Análise de Sentimentos

A análise de sentimentos envolve determinar a polaridade (positiva, negativa ou neutra) de um texto. Substituição de palavras pode melhorar essa análise.

texto = "Eu adorei o filme, mas a comida estava ruim."
palavras = word_tokenize(texto, language='portuguese')
polaridade = 0

for palavra in palavras:
    sinsets = wordnet.synsets(palavra, lang='por')
    if sinsets:
        for syn in sinsets:
            polaridade += syn.pos_score() - syn.neg_score()

print("Polaridade do texto:", polaridade)  # Saída: Polaridade do texto: 0.25 (por exemplo)
Enter fullscreen mode Exit fullscreen mode
Normalização de Texto

A normalização de texto envolve transformar o texto em uma forma consistente. Isso pode incluir a correção ortográfica, remoção de stopwords, e substituição de sinônimos.

stopwords = set(stopwords.words('portuguese'))
texto = "A análise de textos é uma área fascinante do PLN."
palavras = word_tokenize(texto, language='portuguese')
palavras_filtradas = [w for w in palavras se não w in stopwords]

texto_normalizado = " ".join(palavras_filtradas)
print(texto_normalizado)  # Saída: "análise textos área fascinante PLN"
Enter fullscreen mode Exit fullscreen mode
Melhoria da Busca em Textos

Em motores de busca, a substituição de sinônimos pode melhorar os resultados da busca, encontrando documentos que usam sinônimos das palavras-chave buscadas.

consulta = "bom filme"
consulta_expandidas = []

for palavra em consulta.split():
    sinonimos = substituir_sinonimos(palavra)
    consulta_expandidas.extend(sinonimos)

print("Consulta expandida:", " ".join(consulta_expandidas))  # Saída: "bom legal ótimo excelente filme"
Enter fullscreen mode Exit fullscreen mode

Conclusão

Neste texto, exploramos várias técnicas de substituição e correção de palavras usando a biblioteca NLTK em Python. Vimos como fazer stemming, lematização, usar expressões regulares para substituir palavras, correção ortográfica com Enchant, e substituição de sinônimos e antônimos com o WordNet. Também discutimos aplicações práticas dessas técnicas em análise de sentimentos, normalização de texto e motores de busca.

O uso dessas técnicas pode melhorar significativamente a qualidade da análise de texto, tornando os resultados mais precisos e relevantes. O NLTK oferece uma gama poderosa de ferramentas para quem trabalha com processamento de linguagem natural, e entender como utilizar essas ferramentas é essencial para qualquer projeto de PLN.

Image of Datadog

The Future of AI, LLMs, and Observability on Google Cloud

Datadog sat down with Google’s Director of AI to discuss the current and future states of AI, ML, and LLMs on Google Cloud. Discover 7 key insights for technical leaders, covering everything from upskilling teams to observability best practices

Learn More

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more