DEV Community

Paul J. Lucas
Paul J. Lucas

Posted on

Dynamically Allocating 2D Arrays in C++

Introduction

Assuming you’ve read Dynamically Allocating 2D Arrays Efficiently (and Correctly!) in C, the last paragraph teased:

In C++, you can eliminate the row pointers and still use the [][] syntax by use of templates and overloading operator[](), but that’s a story for another time.

That time has come.

A Small 2D Matrix Class

In C++, a small 2D matrix class can be written. A bare-bones implementation is:

template<typename T>
class matrix2d {
public:
    typedef T value_type;
    typedef value_type* pointer;
    typedef value_type const* const_pointer;
    typedef value_type& reference;
    typedef value_type const& const_reference;

    typedef std::size_t size_type;
    typedef std::ptrdiff_t difference_type;

    matrix2d( size_type idim, size_type jdim ) :
        _dim{ idim, jdim },
        _elem{ alloc( _dim ) }
    {
    }

    ~matrix2d() noexcept {
        delete[] _elem;
    }

    pointer operator[]( size_type row ) noexcept {
        return &_elem[ row * _dim.first ];
    }

    const_pointer operator[]( size_type row ) const noexcept {
        return &_elem[ row * _dim.first ];
    }

private:
    std::pair<size_type,size_type> _dim;
    pointer _elem;

    static pointer alloc( std::pair<size_type,size_type> const &dim ) {
        return new value_type[ dim.first * dim.second ];
    }
};
Enter fullscreen mode Exit fullscreen mode

The set of typedefs at the beginning are boiletplate to make the class play nicely with the STL.

Unlike the C implementation, the 2D matrix class remembers its row size — which means that an overloaded operator[]() can use it to calculate the offset for the ith row:

    pointer operator[]( size_type row ) noexcept {
        return &_elem[ row * _dim.first ];
    }
Enter fullscreen mode Exit fullscreen mode

Hence in code like:

matrix2d<int> m2d{ 3, 3 };
m2d[i][j] = 0;
Enter fullscreen mode Exit fullscreen mode

the [i] calls the overloaded operator[]() that returns a pointer to the start of the ith row within the contiguous elements in row-major order that the non-overloaded [j] accesses the jth element (of the ith “sub-array” row). Unlike the C implementation, no additional row pointers are needed because they’re calculated at run-time.

Element Access

The caveat is that each matrix element access via [i][j] now requires a multiplication that wasn’t required in the C implementation. Like many other things in computer science, it’s a trade-off. However, this can be mitigated in a couple of ways. Instead of writing:

for ( size_t i = 0; i < 3; ++i ) {
    for ( size_t j = 0; j < 3; ++i ) {
        // ... m2d[i][j] ...
    }
}
Enter fullscreen mode Exit fullscreen mode

this can be written:

for ( size_t i = 0; i < 3; ++i ) {
    auto row = m2d[i];
    for ( size_t j = 0; j < 3; ++i ) {
        // ... row[j] ...
    }
}
Enter fullscreen mode Exit fullscreen mode

so that only one multiplication is done per row rather than per element.

Another way to mitigate this is by adding iterator boilerplate to the class:

class matrix2d {
public:
    // ...
    typedef pointer iterator;
    typedef const_pointer const_iterator;
    typedef std::reverse_iterator<iterator> reverse_iterator;
    typedef std::reverse_iterator<const_iterator> reverse_const_iterator;
    // ...

    size_type size() const noexcept {
        return _dim.first * _dim.second;
    }

    iterator begin() noexcept {
        return _elem;
    }

    const_iterator cbegin() const noexcept {
        return _elem;
    }

    const_iterator begin() const noexcept {
        return cbegin();
    }

    reverse_iterator rbegin() noexcept {
        return reverse_iterator{ end() };
    }

    const_reverse_iterator crbegin() const noexcept {
        return const_reverse_iterator{ cend() };
    }

    const_reverse_iterator rbegin() const noexcept {
        return crbegin();
    }

    iterator end() noexcept {
        return _elem + size();
    }

    const_iterator cend() const noexcept {
        return _elem + size();
    }

    const_iterator end() const noexcept {
        return cend();
    }

    reverse_iterator rend() noexcept {
        return reverse_iterator{ begin() };
    }

    const_reverse_iterator crend() const noexcept {
        return const_reverse_iterator{ cbegin() };
    }

    const_reverse_iterator rend() const noexcept {
        return crend();
    }

    // ...
Enter fullscreen mode Exit fullscreen mode

Now you can do:

for ( auto elem : m2d ) {
    // ... elem ...
}
Enter fullscreen mode Exit fullscreen mode

to iterate over all the elements with no multiplications being done.

Copy, Move, & Assignment

To make matrix2d correct, it requires the addition of a copy constructor:

    matrix2d( matrix2d const &from ) :
        _dim{ from._dim },
        _elem{ alloc( _dim ) }
    {
        copy_elem( from );
    }

    // ...
private:
    // ...

    static pointer alloc( std::pair<size_type,size_type> const &dim ) {
        return new value_type[ dim.first * dim.second ];
    }

    void copy_elem( matrix2d const &from ) noexcept {
        for ( size_type i = 0; i < from.size(); ++i )
            _elem[i] = from._elem[i];
    }
};
Enter fullscreen mode Exit fullscreen mode

A move constructor would improve move efficiency:

    matrix2d( matrix2d &&from ) noexcept :
        _dim{ from._dim },
        _elem{ std::exchange( from._elem, nullptr ) }
    {
    }
Enter fullscreen mode Exit fullscreen mode

Note that from._dim need not be zeroed.

And copy & move assignment:

    matrix2d& operator=( matrix2d const &from ) {
        if ( &from != this ) {
            delete[] _elem;
            _dim = from._dim;
            alloc( _dim );
            copy_elem( from );
        }
        return *this;
    }

    matrix2d& operator=( matrix2d &&from ) noexcept {
        delete[] _elem;
        _dim = from._dim;
        _elem = std::exchange( from._elem, nullptr );
        return *this;
    }
Enter fullscreen mode Exit fullscreen mode

Finishing Touches

In addition to size() that returns the total number of elements, dim() might come in handy to get each dimension:

    std::pair<size_type,size_type> dim() const noexcept {
        return _dim;
    }
Enter fullscreen mode Exit fullscreen mode

And lastly, swap(), both as a member function:

    void swap( matrix2d &other ) {
        _dim = std::exchange( other._dim, _dim );
        _elem = std::exchange( other._elem, _elem );
    }
Enter fullscreen mode Exit fullscreen mode

and a global function so std::swap() works:

namespace std {
    template<typename T>
    inline void swap( matrix2d<T> &a, matrix2d<T> &b ) {
        a.swap( b );
    }
}
Enter fullscreen mode Exit fullscreen mode

Conclusion

The power of classes in C++ enable a more memory efficient implementation of a dynamically allocated 2D matrix by eliminating the row pointers required in C — but with the caveat of requiring a multiplication for random element access.

Top comments (0)