Here is the solution proposed by Groq :
import spacy
from spacy import displacy
from spacy.util import minibatch, compounding
# Load the French language model
nlp = spacy.load("fr_core_news_sm")
# Process the text
doc = nlp("Leurs contrôles, dans le cadre du dispositif anti-inflation, ont permis de veiller à ce que les engagements des industriels et distributeurs soient tenus. ...")
# Extract the sentences
sentences = [sent for sent in doc.sents]
# Correct the orthography
orthography_corrected_sentences = []
for sentence in sentences:
orthography_corrected_sentence = sentence.text
orthography_corrected_sentence = orthography_corrected_sentence.replace("«", "\"").replace("»", "\"").replace("â", "a").replace("ê", "e").replace("ô", "o")
orthography_corrected_sentences.append(orthography_corrected_sentence)
# Format the sentences as a bullet list
bullet_list = []
for sentence in orthography_corrected_sentences:
bullet_list.append("- " + sentence.strip())
print("\n".join(bullet_list))
Top comments (0)