*Memos:
- My post explains min() and max().
- My post explains minimum() and maximum().
- My post explains fmin() and fmax().
- My post explains argmin() and argmax().
- My post explains kthvalue() and topk().
- My post explains cummin() and cummax().
aminmax() can get two of the 0D or more D tensors of zero or more minimum and maximum elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
aminmax()can be used with torch or a tensor. - The 1st argument(
input) withtorchor using a tensor(Required-Type:tensorofint,floatorbool). - There is
dimargument withtorchor a tensor(Optional-Type:int): *Memos:- Setting
dimcan get zero or more 1st minimum and maximum elements. - You must use
dim=.
- Setting
- There is
keepdimargument withtorchor a tensor(Optional-Default:False-Type:bool): *Memos:- You must use
keepdim=. -
My post explains
keepdimargument.
- You must use
- There is
outargument withtorch(Optional-Default:None-Type:tuple(tensor,tensor) orlist(tensor,tensor)): *Memos:-
out=must be used. -
My post explains
outargument.
-
- The 0D tensor of one complex number with
dim=0ordim=-1works. - An empty 2D or more D
inputtensor or tensor doesn't work if not settingdim. - An empty 1D
inputtensor or tensor doesn't work even if settingdim.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.aminmax(input=my_tensor)
my_tensor.aminmax()
# torch.return_types.aminmax(
# min=tensor(3),
# max=tensor(9))
torch.aminmax(input=my_tensor, dim=0)
torch.aminmax(input=my_tensor, dim=-2)
# torch.return_types.aminmax(
# min=tensor([3, 4, 3, 3]),
# max=tensor([6, 8, 9, 7]))
torch.aminmax(input=my_tensor, dim=1)
torch.aminmax(input=my_tensor, dim=-1)
# torch.return_types.aminmax(
# min=tensor([4, 3, 3]),
# max=tensor([7, 6, 9]))
my_tensor = torch.tensor([[5., 4., 7., 7.],
[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.aminmax(input=my_tensor)
# torch.return_types.aminmax(
# min=tensor(3.),
# max=tensor(9.))
my_tensor = torch.tensor([[True, False, True, False],
[False, True, False, True],
[True, False, True, False]])
torch.aminmax(input=my_tensor)
# torch.return_types.aminmax(
# min=tensor(False),
# max=tensor(True))
my_tensor = torch.tensor(5.+7.j)
torch.aminmax(input=my_tensor, dim=0)
torch.aminmax(input=my_tensor, dim=-1)
# torch.return_types.aminmax(
# min=tensor(5.+7.j),
# max=tensor(5.+7.j))
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.aminmax(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.aminmax(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.aminmax(input=my_tensor, dim=0)
# torch.return_types.aminmax(
# min=tensor([]),
# max=tensor([]))
my_tensor = torch.tensor([[[]]])
torch.aminmax(input=my_tensor, dim=0)
# torch.return_types.aminmax(
# min=tensor([], size=(1, 0)),
# max=tensor([], size=(1, 0)))
amin() can get the 0D or more D tensor of zero or more minimum elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
amin()can be used withtorchor a tensor. - The 1st argument(
input) withtorchor using a tensor(Required-Type:tensorofint,floatorbool). - The 2nd argument with
torchor the 1st argument with a tensor isdim(Optional-Type:int,tupleofintorlistofint). *Settingdimcan get zero or more 1st minimum elements. - The 3rd argument with
torchor the 2nd argument with a tensor iskeepdim(Optional-Default:False-Type:bool). *My post explainskeepdimargument. - There is
outargument withtorch(Optional-Default:None-Type:tensor): *Memos:-
out=must be used. -
My post explains
outargument.
-
- An empty 2D or more D
inputtensor or tensor doesn't work if not settingdim. - An empty 1D
inputtensor or tensor doesn't work even if settingdim.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.amin(input=my_tensor)
my_tensor.amin()
torch.amin(input=my_tensor, dim=(0, 1))
torch.amin(input=my_tensor, dim=(0, -1))
torch.amin(input=my_tensor, dim=(1, 0))
torch.amin(input=my_tensor, dim=(1, -2))
torch.amin(input=my_tensor, dim=(-1, 0))
torch.amin(input=my_tensor, dim=(-1, -2))
torch.amin(input=my_tensor, dim=(-2, 1))
torch.amin(input=my_tensor, dim=(-2, -1))
# tensor(3)
torch.amin(input=my_tensor, dim=0)
torch.amin(input=my_tensor, dim=-2)
torch.amin(input=my_tensor, dim=(0,))
torch.amin(input=my_tensor, dim=(-2,))
# tensor([3, 4, 3, 3])
torch.amin(input=my_tensor, dim=1)
torch.amin(input=my_tensor, dim=-1)
torch.amin(input=my_tensor, dim=(1,))
torch.amin(input=my_tensor, dim=(-1,))
# tensor([4, 3, 3])
my_tensor = torch.tensor([[5., 4., 7., 7.],
[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.amin(input=my_tensor)
# tensor(3.)
my_tensor = torch.tensor([[True, False, True, False],
[False, True, False, True],
[True, False, True, False]])
torch.amin(input=my_tensor)
# tensor(False)
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.amin(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.amin(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.amin(input=my_tensor, dim=0)
# tensor([])
my_tensor = torch.tensor([[[]]])
torch.amin(input=my_tensor, dim=0)
# tensor([], size=(1, 0))
amax() can get the 0D or more D tensor of zero or more maximum elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
amax()can be used withtorchor a tensor. - The 1st argument(
input) withtorchor using a tensor(Required-Type:tensorofint,floatorbool). - The 2nd argument with
torchor the 1st argument with a tensor isdim(Optional-Type:int,tupleofintorlistofint). *Settingdimcan get zero or more 1st maximum elements. - The 3rd argument with
torchor the 2nd argument iskeepdim(Optional-Default:False-Type:bool). *My post explainskeepdimargument. - There is
outargument withtorch(Optional-Default:None-Type:tensor): *Memos:-
out=must be used. -
My post explains
outargument.
-
- An empty 2D or more D
inputtensor or tensor doesn't work if not settingdim. - An empty 1D
inputtensor or tensor doesn't work even if settingdim.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.amax(input=my_tensor)
my_tensor.amax()
torch.amax(input=my_tensor, dim=(0, 1))
torch.amax(input=my_tensor, dim=(0, -1))
torch.amax(input=my_tensor, dim=(1, 0))
torch.amax(input=my_tensor, dim=(1, -2))
torch.amax(input=my_tensor, dim=(-1, 0))
torch.amax(input=my_tensor, dim=(-1, -2))
torch.amax(input=my_tensor, dim=(-2, 1))
torch.amax(input=my_tensor, dim=(-2, -1))
# tensor(9)
torch.amax(input=my_tensor, dim=0)
torch.amax(input=my_tensor, dim=-2)
torch.amax(input=my_tensor, dim=(0,))
torch.amax(input=my_tensor, dim=(-2,))
# tensor([6, 8, 9, 7])
torch.amax(input=my_tensor, dim=1)
torch.amax(input=my_tensor, dim=-1)
torch.amax(input=my_tensor, dim=(1,))
torch.amax(input=my_tensor, dim=(-1,))
# tensor([7, 6, 9])
my_tensor = torch.tensor([[5., 4., 7., 7.],
[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.amax(input=my_tensor)
# tensor(9.)
my_tensor = torch.tensor([[True, False, True, False],
[False, True, False, True],
[True, False, True, False]])
torch.amax(input=my_tensor)
# tensor(True)
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.amax(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.amax(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.amax(input=my_tensor, dim=0)
# tensor([])
my_tensor = torch.tensor([[[]]])
torch.amax(input=my_tensor, dim=0)
# tensor([], size=(1, 0))
Top comments (0)