DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

kthvalue and topk in PyTorch

Buy Me a Coffee

*Memos:

kthvalue() can get two of the 0D or more D tensors of zero or more kth smallest elements and their indices from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • kthvalue() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int or float). *The 0D tensor of complex or bool works.
  • The 2nd argument with torch or the 1st argument with a tensor is k(Required-Type:int). *It must be greater than 0.
  • The 3rd argument with torch or the 2nd argument with a tensor is dim(Optional-Type:int).
  • The 4th argument with torch or the 3rd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • It must be used with dim.
    • My post explains keepdim argument.
  • There is out argument with torch(Optional-Default:None-Type:tuple(tensor, tensor) or list(tensor, tensor)): *Memos:
    • out= must be used.
    • My post explains out argument.
  • If there are the multiple same k th elements, one is returned nondeterministically.
  • An empty 2D or more D input tensor or tensor doesn't work if not setting dim with k=1.
  • An empty 1D input tesnor or tensor doesn't work even if setting dim with k=1.
import torch

my_tensor = torch.tensor([5, 1, 9, 7, 6, 8, 0, 5])

torch.kthvalue(input=my_tensor, k=3)
torch.kthvalue(input=my_tensor, k=3, dim=0)
torch.kthvalue(input=my_tensor, k=3, dim=-1)
# torch.return_types.kthvalue(
# values=tensor(5),
# indices=tensor(7))

torch.kthvalue(input=my_tensor, k=4)
torch.kthvalue(input=my_tensor, k=4, dim=0)
torch.kthvalue(input=my_tensor, k=4, dim=-1)
# torch.return_types.kthvalue(
# values=tensor(5),
# indices=tensor(0))

my_tensor = torch.tensor([[5, 1, 9, 7],
                          [6, 8, 0, 5]])
torch.kthvalue(input=my_tensor, k=3)
torch.kthvalue(input=my_tensor, k=3, dim=1)
torch.kthvalue(input=my_tensor, k=3, dim=-1)
# torch.return_types.kthvalue(
# values=tensor([7, 6]),
# indices=tensor([3, 0]))

my_tensor = torch.tensor([[5., 1., 9., 7.],
                          [6., 8., 0., 5.]])
torch.kthvalue(input=my_tensor, k=3)
# torch.return_types.kthvalue(
# values=tensor([7., 6.]),
# indices=tensor([3, 0]))

my_tensor = torch.tensor(5.+0.j)

torch.kthvalue(input=my_tensor, k=1)
# torch.return_types.kthvalue(
# values=tensor(5.+0.j),
# indices=tensor(0))

my_tensor = torch.tensor(True)

torch.kthvalue(input=my_tensor, k=1)
# torch.return_types.kthvalue(
# values=tensor(True),
# indices=tensor(0))

my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])

torch.kthvalue(input=my_tensor, k=1) # Error

my_tensor = torch.tensor([])

torch.kthvalue(input=my_tensor, k=1, dim=0) # Error

my_tensor = torch.tensor([[]])

torch.kthvalue(input=my_tensor, k=1, dim=0)
# torch.return_types.kthvalue(
# values=tensor([]),
# indices=tensor([], dtype=torch.int64))

my_tensor = torch.tensor([[[]]])

torch.kthvalue(input=my_tensor, k=1, dim=0)
# torch.return_types.kthvalue(
# values=tensor([], size=(1, 0)),
# indices=tensor([], size=(1, 0), dtype=torch.int64))
Enter fullscreen mode Exit fullscreen mode

topk() can get two of the 0D or more D tensors of zero or more k largest or smallest elements and their indices from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • topk() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int or float). *complex or bool of a 0D tensor works on cpu.
  • The 2nd argument with torch or the 1st argument with a tensor is k(Required-Type:int). *It must be greater than or equal to 0.
  • The 3rd argument with torch or the 2nd argument with a tensor is dim(Optional-Type:int).
  • The 4th argument with torch or the 3rd argument with a tensor is largest(Optional-Default:True-Type:bool). *True gets zero or more largest elements while False gets zero or more smallest elements.
  • The 5th argument with torch or the 4th argument with a tensor is sorted(Optional-Default:True-Type:bool). *Sometimes, a return tensor is sorted with False but sometimes not so make it True if you want to definitely get a sorted tensor.
  • There is out argument with torch(Optional-Default:None-Type:tuple(tensor, tensor) or list(tensor, tensor)): *Memos:
    • out= must be used.
    • My post explains out argument.
  • If there are the multiple same k elements, one or more ones are returned nondeterministically.
  • An empty 2D or more D input tensor or tensor doesn't work if not setting dim with k=1.
  • An empty 1D input tensor or tensor doesn't work even if setting dim with k=1.
import torch

my_tensor = torch.tensor([5, 1, 9, 7, 6, 8, 0, 5])

torch.topk(input=my_tensor, k=3)
torch.topk(input=my_tensor, k=3, dim=0)
torch.topk(input=my_tensor, k=3, dim=-1)
# torch.return_types.topk(
# values=tensor([9, 8, 7]),
# indices=tensor([2, 5, 3]))

torch.topk(input=my_tensor, k=3, dim=0, largest=False)
# torch.return_types.topk(
# values=tensor([0, 1, 5]),
# indices=tensor([6, 1, 0]))

torch.topk(input=my_tensor, k=3, dim=0, largest=False, sorted=False)
# torch.return_types.topk(
# values=tensor([1, 0, 5]),
# indices=tensor([1, 6, 0]))

torch.topk(input=my_tensor, k=4)
torch.topk(input=my_tensor, k=4, dim=0)
torch.topk(input=my_tensor, k=4, dim=-1)
# torch.return_types.topk(
# values=tensor([9, 8, 7, 6]),
# indices=tensor([2, 5, 3, 4]))

torch.topk(input=my_tensor, k=4, dim=0, largest=False)
# torch.return_types.topk(
# values=tensor([0, 1, 5, 5]),
# indices=tensor([6, 1, 0, 7]))

torch.topk(input=my_tensor, k=4, dim=0, largest=False, sorted=False)
# torch.return_types.topk(
# values=tensor([1, 0, 5, 5]),
# indices=tensor([1, 6, 0, 7]))

my_tensor = torch.tensor([[5, 1, 9, 7],
                          [6, 8, 0, 5]])
torch.topk(input=my_tensor, k=3)
torch.topk(input=my_tensor, k=3, dim=1)
torch.topk(input=my_tensor, k=3, dim=-1)
# torch.return_types.topk(
# values=tensor([[9, 7, 5], [8, 6, 5]]),
# indices=tensor([[2, 3, 0], [1, 0, 3]]))

torch.topk(input=my_tensor, k=3, dim=1, largest=False)
# torch.return_types.topk(
# values=tensor([[1, 5, 7], [0, 5, 6]]),
# indices=tensor([[1, 0, 3], [2, 3, 0]]))

torch.topk(input=my_tensor, k=3, dim=1, largest=False, sorted=False)
# torch.return_types.topk(
# values=tensor([[1, 5, 7], [5, 0, 6]]),
# indices=tensor([[1, 0, 3], [3, 2, 0]]))

my_tensor = torch.tensor([[5., 1., 9., 7.],
                          [6., 8., 0., 5.]])
torch.topk(input=my_tensor, k=3)
# torch.return_types.topk(
# values=tensor([[9., 7., 5.],
#                [8., 6., 5.]]),
# indices=tensor([[2, 3, 0],
#                 [1, 0, 3]]))

my_tensor = torch.tensor(5.+0.j)

torch.topk(input=my_tensor, k=1)
# torch.return_types.topk(
# values=tensor(5.+0.j),
# indices=tensor(0))

my_tensor = torch.tensor(True)

torch.topk(input=my_tensor, k=1)
# torch.return_types.topk(
# values=tensor(True),
# indices=tensor(0))

my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])

torch.topk(input=my_tensor, k=1) # Error

my_tensor = torch.tensor([])

torch.topk(input=my_tensor, k=1, dim=0) # Error

my_tensor = torch.tensor([[]])

torch.topk(input=my_tensor, k=1, dim=0)
# torch.return_types.topk(
# values=tensor([], size=(1, 0)),
# indices=tensor([], size=(1, 0), dtype=torch.int64))

my_tensor = torch.tensor([[[]]])

torch.topk(input=my_tensor, k=1, dim=0)
# torch.return_types.topk(
# values=tensor([], size=(1, 1, 0)),
# indices=tensor([], size=(1, 1, 0), dtype=torch.int64))
Enter fullscreen mode Exit fullscreen mode

Postmark Image

Speedy emails, satisfied customers

Are delayed transactional emails costing you user satisfaction? Postmark delivers your emails almost instantly, keeping your customers happy and connected.

Sign up

Top comments (0)