*Memos:
- My post explains min() and max().
- My post explains minimum() and maximum().
- My post explains fmin() and fmax().
- My post explains aminmax(), amin() and amax().
- My post explains kthvalue() and topk().
- My post explains cummin() and cummax().
argmin() can get the 0D or more D tensor of the zero or more indices of the 1st minimum elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
argmin()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
orfloat
). - The 2nd argument with
torch
or the 1st argument isdim
(Optional-Type:int
). *Settingdim
can get the zero or more indices of the 1st minimum elements. - The 3rd argument with
torch
or the 2nd argument iskeepdim
(Optional-Default:False
-Type:bool
). *My post explainskeepdim
argument. - The 1D or more D tensor of one complex number or boolean value with
dim
works. - An empty 2D or more D
input
tensor or tensor doesn't work if not settingdim
. - An empty 1D
input
tesnor or tensor doesn't work even if settingdim
.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.argmin(input=my_tensor)
my_tensor.argmin()
# tensor(6)
torch.argmin(input=my_tensor, dim=0)
torch.argmin(input=my_tensor, dim=-2)
# tensor([2, 0, 1, 2])
torch.argmin(input=my_tensor, dim=1)
torch.argmin(input=my_tensor, dim=-1)
# tensor([1, 2, 0])
my_tensor = torch.tensor([[5., 4., 7., 7.],
[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.argmin(input=my_tensor)
# tensor(6)
my_tensor = torch.tensor([5.+7.j])
torch.argmin(input=my_tensor, dim=0)
# tensor(0)
my_tensor = torch.tensor([[True]])
torch.argmin(input=my_tensor, dim=0)
# tensor([0])
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.argmin(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.argmin(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.argmin(input=my_tensor, dim=0)
# tensor([], dtype=torch.int64)
my_tensor = torch.tensor([[[]]])
torch.argmin(input=my_tensor, dim=0)
# tensor([], size=(1, 0), dtype=torch.int64)
argmax() can get the 0D or more D tensor of the zero or more indices of the 1st maximum elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
argmax()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
orfloat
). - The 2nd argument with
torch
or the 1st argument isdim
(Optional-Type:int
). *Settingdim
can get the zero or more indices of the 1st maximum elements. - The 3rd argument with
torch
or the 2nd argument iskeepdim
(Optional-Default:False
-Type:bool
). *My post explainskeepdim
argument. - The 1D or more D tensor of one complex number or boolean value with
dim
works. - An empty 2D or more D
input
tensor or tensor doesn't work if not settingdim
. - An empty 1D
input
tesnor or tensor doesn't work even if settingdim
.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.argmax(input=my_tensor)
my_tensor.argmax()
# tensor(10)
torch.argmax(input=my_tensor, dim=0)
torch.argmax(input=my_tensor, dim=-2)
# tensor([1, 2, 2, 0])
torch.argmax(input=my_tensor, dim=1)
torch.argmax(input=my_tensor, dim=-1)
# tensor([2, 0, 2])
my_tensor = torch.tensor([[5., 4., 7., 7.],
[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.argmax(input=my_tensor)
# tensor(10)
my_tensor = torch.tensor([5.+7.j])
torch.argmax(input=my_tensor, dim=0)
# tensor(0)
my_tensor = torch.tensor([[True]])
torch.argmax(input=my_tensor, dim=0)
# tensor([0])
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.argmax(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.argmax(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.argmax(input=my_tensor, dim=0)
# tensor([], dtype=torch.int64)
my_tensor = torch.tensor([[[]]])
torch.argmax(input=my_tensor, dim=0)
# tensor([], size=(1, 0), dtype=torch.int64)
Top comments (0)