*Memos:
- My post explains minimum() and maximum().
- My post explains fmin() and fmax().
- My post explains argmin() and argmax().
- My post explains aminmax(), amin() and amax().
- My post explains kthvalue() and topk().
- My post explains cummin() and cummax().
min() can get the 0D of the 1st one minimum element or two of the 0D or more D tensors of the 1st zero or more minimum elements and their indices from the one or two 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
min()can be used with torch or a tensor. - The 1st argument(
input) withtorchor using a tensor(Required-Type:tensorofint,floatorbool). - The 2nd argument with
torchor the 1st argument isdim(Optional-Type:int). *Settingdimcan get zero or more 1st minimum elements and their indices. - The 2nd argument with
torchor the 1st argument isother(Optional-Type:tensorofint,floatorbool): *Memos:- It can only be used with
input. - This is the functionality of minimum().
- It can only be used with
- The 3rd argument with
torchor the 2nd argument iskeepdim(Optional-Default:False-Type:bool): *Memos:- It must be used with
dimand withoutother. -
My post explains
keepdimargument.
- It must be used with
- There is
outargument withtorch(Optional-Default:None-Type:tensor,tuple(tensor,tensor) orlist(tensor,tensor)): *Memos:- The type of
tensormust be used withoutdimandkeepdim. - The type of
tuple(tensor,tensor) orlist(tensor,tensor) must be used withdimand withoutother. -
out=must be used. -
My post explains
outargument.
- The type of
- The empty 2D or more D tensor without
othertensor doesn't work if not settingdim. - The empty 1D tensor without
othertensor doesn't work even if settingdim.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.min(input=my_tensor)
my_tensor.min()
# tensor(3)
torch.min(input=my_tensor, dim=0)
torch.min(input=my_tensor, dim=-2)
# torch.return_types.min(
# values=tensor([3, 4, 3, 3]),
# indices=tensor([2, 0, 1, 2]))
torch.min(input=my_tensor, dim=1)
torch.min(input=my_tensor, dim=-1)
# torch.return_types.min(
# values=tensor([4, 3, 3]),
# indices=tensor([1, 2, 0]))
tensor1 = torch.tensor([5, 4, 7, 7])
tensor2 = torch.tensor([[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.min(input=tensor1, other=tensor2)
# tensor([[5, 4, 3, 5],
# [3, 4, 7, 3]])
tensor1 = torch.tensor([5., 4., 7., 7.])
tensor2 = torch.tensor([[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.min(input=tensor1, other=tensor2)
# tensor([[5., 4., 3., 5.],
# [3., 4., 7., 3.]])
tensor1 = torch.tensor([True, False, True, False])
tensor2 = torch.tensor([[True, False, True, False],
[False, True, False, True]])
torch.min(input=tensor1, other=tensor2)
# tensor([[True, False, True, False],
# [False, False, False, False]])
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.min(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.min(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.min(input=my_tensor, dim=0)
# torch.return_types.min(
# values=tensor([]),
# indices=tensor([], dtype=torch.int64))
my_tensor = torch.tensor([[[]]])
torch.min(input=my_tensor, dim=0)
# torch.return_types.min(
# values=tensor([], size=(1, 0)),
# indices=tensor([], size=(1, 0), dtype=torch.int64))
max() can get the 0D of the 1st one maximum element or two of the 0D or more D tensors of the 1st zero or more maximum elements and their indices from the one or two 0D or more D tensors of zero or more elements as shown below:
-
max()can be used withtorchor a tensor. - The 1st argument(
input) withtorchor using a tensor(Required-Type:tensorofint,floatorbool). - The 2nd argument with
torchor the 1st argument isdim(Optional-Type:int). *Settingdimcan get zero or more 1st maximum elements and their indices. - The 2nd argument with
torchor the 1st argument isother(Optional-Type:tensorofint,floatorbool): *Memos:- It can only be used with
input. - This is the functionality of maximum().
- It can only be used with
- The 3rd argument with
torchor the 2nd argument iskeepdim(Optional-Default:False-Type:bool): *Memos:- It must be used with
dimand withoutother. -
My post explains
keepdimargument.
- It must be used with
- There is
outargument withtorch(Optional-Default:None-Type:tensor,tuple(tensor,tensor) orlist(tensor,tensor)): *Memos:- The type of
tensormust be used withoutdimandkeepdim. - The type of
tuple(tensor,tensor) orlist(tensor,tensor) must be used withdimand withoutother. -
out=must be used. -
My post explains
outargument.
- The type of
- The empty 2D or more D tensor without
othertensor doesn't work if not settingdim. - The empty 1D
inputtesnor or tensor withoutothertensor doesn't work even if settingdim.
import torch
my_tensor = torch.tensor([[5, 4, 7, 7],
[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.max(input=my_tensor)
my_tensor.max()
# tensor(9)
torch.max(input=my_tensor, dim=0)
torch.max(input=my_tensor, dim=-2)
# torch.return_types.max(
# values=tensor([6, 8, 9, 7]),
# indices=tensor([1, 2, 2, 0]))
torch.max(input=my_tensor, dim=1)
torch.max(input=my_tensor, dim=-1)
# torch.return_types.max(
# values=tensor([7, 6, 9]),
# indices=tensor([2, 0, 2]))
tensor1 = torch.tensor([5, 4, 7, 7])
tensor2 = torch.tensor([[6, 5, 3, 5],
[3, 8, 9, 3]])
torch.max(input=tensor1, other=tensor2)
# tensor([[6, 5, 7, 7],
# [5, 8, 9, 7]])
tensor1 = torch.tensor([5., 4., 7., 7.])
tensor2 = torch.tensor([[6., 5., 3., 5.],
[3., 8., 9., 3.]])
torch.max(input=tensor1, other=tensor2)
# tensor([[6., 5., 7., 7.],
# [5., 8., 9., 7.]])
tensor1 = torch.tensor([True, False, True, False])
tensor2 = torch.tensor([[True, False, True, False],
[False, True, False, True]])
torch.max(input=tensor1, other=tensor2)
# tensor([[True, False, True, False],
# [True, True, True, True]])
my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])
torch.max(input=my_tensor) # Error
my_tensor = torch.tensor([])
torch.max(input=my_tensor, dim=0) # Error
my_tensor = torch.tensor([[]])
torch.max(input=my_tensor, dim=0)
# torch.return_types.max(
# values=tensor([]),
# indices=tensor([], dtype=torch.int64))
my_tensor = torch.tensor([[[]]])
torch.max(input=my_tensor, dim=0)
# torch.return_types.max(
# values=tensor([], size=(1, 0)),
# indices=tensor([], size=(1, 0), dtype=torch.int64))
Top comments (0)