DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

min and max in PyTorch

Buy Me a Coffee

*Memos:

min() can get the 0D of the 1st one minimum element or two of the 0D or more D tensors of the 1st zero or more minimum elements and their indices from the one or two 0D or more D tensors of zero or more elements as shown below:

*Memos:

  • min() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument is dim(Optional-Type:int). *Setting dim can get zero or more 1st minimum elements and their indices.
  • The 2nd argument with torch or the 1st argument is other(Optional-Type:tensor of int, float or bool): *Memos:
    • It can only be used with input.
    • This is the functionality of minimum().
  • The 3rd argument with torch or the 2nd argument is keepdim(Optional-Default:False-Type:bool): *Memos:
    • It must be used with dim and without other.
    • My post explains keepdim argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor, tuple(tensor, tensor) or list(tensor, tensor)): *Memos:
    • The type of tensor must be used without dim and keepdim.
    • The type of tuple(tensor, tensor) or list(tensor, tensor) must be used with dim and without other.
    • out= must be used.
    • My post explains out argument.
  • The empty 2D or more D tensor without other tensor doesn't work if not setting dim.
  • The empty 1D tensor without other tensor doesn't work even if setting dim.
import torch

my_tensor = torch.tensor([[5, 4, 7, 7],
                          [6, 5, 3, 5],
                          [3, 8, 9, 3]])
torch.min(input=my_tensor)
my_tensor.min()
# tensor(3)

torch.min(input=my_tensor, dim=0)
torch.min(input=my_tensor, dim=-2)
# torch.return_types.min(
# values=tensor([3, 4, 3, 3]),
# indices=tensor([2, 0, 1, 2]))

torch.min(input=my_tensor, dim=1)
torch.min(input=my_tensor, dim=-1)
# torch.return_types.min(
# values=tensor([4, 3, 3]),
# indices=tensor([1, 2, 0]))

tensor1 = torch.tensor([5, 4, 7, 7])
tensor2 = torch.tensor([[6, 5, 3, 5],
                        [3, 8, 9, 3]])
torch.min(input=tensor1, other=tensor2)
# tensor([[5, 4, 3, 5],
#         [3, 4, 7, 3]])

tensor1 = torch.tensor([5., 4., 7., 7.])
tensor2 = torch.tensor([[6., 5., 3., 5.],
                        [3., 8., 9., 3.]])
torch.min(input=tensor1, other=tensor2)
# tensor([[5., 4., 3., 5.],
#         [3., 4., 7., 3.]])

tensor1 = torch.tensor([True, False, True, False])
tensor2 = torch.tensor([[True, False, True, False],
                        [False, True, False, True]])
torch.min(input=tensor1, other=tensor2)
# tensor([[True, False, True, False],
#         [False, False, False, False]])

my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])

torch.min(input=my_tensor) # Error

my_tensor = torch.tensor([])

torch.min(input=my_tensor, dim=0) # Error

my_tensor = torch.tensor([[]])

torch.min(input=my_tensor, dim=0)
# torch.return_types.min(
# values=tensor([]),
# indices=tensor([], dtype=torch.int64))

my_tensor = torch.tensor([[[]]])

torch.min(input=my_tensor, dim=0)
# torch.return_types.min(
# values=tensor([], size=(1, 0)),
# indices=tensor([], size=(1, 0), dtype=torch.int64))
Enter fullscreen mode Exit fullscreen mode

max() can get the 0D of the 1st one maximum element or two of the 0D or more D tensors of the 1st zero or more maximum elements and their indices from the one or two 0D or more D tensors of zero or more elements as shown below:

  • max() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument is dim(Optional-Type:int). *Setting dim can get zero or more 1st maximum elements and their indices.
  • The 2nd argument with torch or the 1st argument is other(Optional-Type:tensor of int, float or bool): *Memos:
    • It can only be used with input.
    • This is the functionality of maximum().
  • The 3rd argument with torch or the 2nd argument is keepdim(Optional-Default:False-Type:bool): *Memos:
    • It must be used with dim and without other.
    • My post explains keepdim argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor, tuple(tensor, tensor) or list(tensor, tensor)): *Memos:
    • The type of tensor must be used without dim and keepdim.
    • The type of tuple(tensor, tensor) or list(tensor, tensor) must be used with dim and without other.
    • out= must be used.
    • My post explains out argument.
  • The empty 2D or more D tensor without other tensor doesn't work if not setting dim.
  • The empty 1D input tesnor or tensor without other tensor doesn't work even if setting dim.
import torch

my_tensor = torch.tensor([[5, 4, 7, 7],
                          [6, 5, 3, 5],
                          [3, 8, 9, 3]])
torch.max(input=my_tensor)
my_tensor.max()
# tensor(9)

torch.max(input=my_tensor, dim=0)
torch.max(input=my_tensor, dim=-2)
# torch.return_types.max(
# values=tensor([6, 8, 9, 7]),
# indices=tensor([1, 2, 2, 0]))

torch.max(input=my_tensor, dim=1)
torch.max(input=my_tensor, dim=-1)
# torch.return_types.max(
# values=tensor([7, 6, 9]),
# indices=tensor([2, 0, 2]))

tensor1 = torch.tensor([5, 4, 7, 7])
tensor2 = torch.tensor([[6, 5, 3, 5],
                        [3, 8, 9, 3]])
torch.max(input=tensor1, other=tensor2)
# tensor([[6, 5, 7, 7],
#         [5, 8, 9, 7]])

tensor1 = torch.tensor([5., 4., 7., 7.])
tensor2 = torch.tensor([[6., 5., 3., 5.],
                        [3., 8., 9., 3.]])
torch.max(input=tensor1, other=tensor2)
# tensor([[6., 5., 7., 7.],
#         [5., 8., 9., 7.]])

tensor1 = torch.tensor([True, False, True, False])
tensor2 = torch.tensor([[True, False, True, False],
                        [False, True, False, True]])
torch.max(input=tensor1, other=tensor2)
# tensor([[True, False, True, False],
#         [True, True, True, True]])

my_tensor = torch.tensor([])
my_tensor = torch.tensor([[]])
my_tensor = torch.tensor([[[]]])

torch.max(input=my_tensor) # Error

my_tensor = torch.tensor([])

torch.max(input=my_tensor, dim=0) # Error

my_tensor = torch.tensor([[]])

torch.max(input=my_tensor, dim=0)
# torch.return_types.max(
# values=tensor([]),
# indices=tensor([], dtype=torch.int64))

my_tensor = torch.tensor([[[]]])

torch.max(input=my_tensor, dim=0)
# torch.return_types.max(
# values=tensor([], size=(1, 0)),
# indices=tensor([], size=(1, 0), dtype=torch.int64))
Enter fullscreen mode Exit fullscreen mode

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Discover a treasure trove of wisdom within this insightful piece, highly respected in the nurturing DEV Community enviroment. Developers, whether novice or expert, are encouraged to participate and add to our shared knowledge basin.

A simple "thank you" can illuminate someone's day. Express your appreciation in the comments section!

On DEV, sharing ideas smoothens our journey and strengthens our community ties. Learn something useful? Offering a quick thanks to the author is deeply appreciated.

Okay