*Memos:
- My post explains min() and max().
- My post explains fmin() and fmax().
- My post explains argmin() and argmax().
- My post explains aminmax(), amin() and amax().
- My post explains kthvalue() and topk().
- My post explains cummin() and cummax().
minimum() can get the 0D or more D tensor of zero or more minimum elements prioritizing nan
from two of the 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
minimum()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument isother
(Required-Type:tensor
ofint
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
-
nan
is taken if there are a number andnan
.
import torch
tensor1 = torch.tensor([5., float('nan'), 4., float('nan')])
tensor2 = torch.tensor([[7., 8., float('nan'), float('nan')],
[-9., 2., 0., -6.]])
torch.minimum(input=tensor1, other=tensor2)
tensor1.minimum(other=tensor2)
# tensor([[5., nan, nan, nan],
# [-9., nan, 0., nan]])
tensor1 = torch.tensor(5.)
tensor2 = torch.tensor([[[7., 8.], [float('nan'), float('nan')]],
[[-9., 2.], [0., -6.]]])
torch.minimum(input=tensor1, other=tensor2)
# tensor([[[5., 5.], [nan, nan]],
# [[-9., 2.], [0., -6.]]])
tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[[7, 8], [-5, -1]],
[[-9, 2], [0, -6]]])
torch.minimum(input=tensor1, other=tensor2)
# tensor([[[5, 5], [-5, -1]],
# [[-9, 2], [0, -6]]])
tensor1 = torch.tensor(True)
tensor2 = torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]])
torch.minimum(input=tensor1, other=tensor2)
# tensor([[[True, False], [True, False]],
# [[False, True], [False, True]]])
maximum() can get the 0D or more D tensor of zero or more maximum elements prioritizing nan
from two of the 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
maximum()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument isother
(Required-Type:tensor
ofint
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
-
nan
is taken if there are a number andnan
.
import torch
tensor1 = torch.tensor([5., float('nan'), 4., float('nan')])
tensor2 = torch.tensor([[7., 8., float('nan'), float('nan')],
[-9., 2., 0., -6.]])
torch.maximum(input=tensor1, other=tensor2)
tensor1.maximum(other=tensor2)
# tensor([[7., nan, nan, nan],
# [5., nan, 4., nan]])
tensor1 = torch.tensor(5.)
tensor2 = torch.tensor([[[7., 8.], [float('nan'), float('nan')]],
[[-9., 2.], [0., -6.]]])
torch.maximum(input=tensor1, other=tensor2)
# tensor([[[7., 8.], [nan, nan]],
# [[5., 5.], [5., 5.]]])
tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[[7, 8], [-5, -1]],
[[-9, 2], [0, -6]]])
torch.maximum(input=tensor1, other=tensor2)
# tensor([[[7, 8], [5, 5]],
# [[5, 5], [5, 5]]])
tensor1 = torch.tensor(True)
tensor2 = torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]])
torch.maximum(input=tensor1, other=tensor2)
# tensor([[[True, True], [True, True]],
# [[True, True], [True, True]]])
Top comments (0)