DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

conj, conj_physical, is_conj and resolve_conj in PyTorch

Buy Me a Coffee

*My post explains real(), frac(), view_as_real() and view_as_complex().

conj() or conj_physical() can get the 0D or more D tensor of zero or more conjugated elements from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • conj() or conj_physical() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool). *If it's not complex type, the original tensor is just returned.
  • For conj_physical(), there is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • conj() can work with is_conj() and resolve_conj which I explain later while conj_physical() cannot work with them.
import torch

my_tensor = torch.tensor(4.7352+6.1584j)

torch.conj(input=my_tensor)
my_tensor.conj()
torch.conj_physical(input=my_tensor)
my_tensor.conj_physical()
# tensor(4.7352-6.1584j)

my_tensor = torch.tensor([4.7352+6.1584j,
                          2.3706-8.4339j,
                          -9.1648-3.0342j])
torch.conj(input=my_tensor)
torch.conj_physical(input=my_tensor)
# tensor([4.7352-6.1584j,
#         2.3706+8.4339j,
#         -9.1648+3.0342j])

my_tensor = torch.tensor([[4.7352+6.1584j,
                           2.3706-8.4339j,
                           -9.1648-3.0342j],
                          [1.5885+7.2316j,
                           -6.4314+3.9501j,
                           5.7923-4.1148j]])
torch.conj(input=my_tensor)
torch.conj_physical(input=my_tensor)
# tensor([[4.7352-6.1584j,
#          2.3706+8.4339j,
#          -9.1648+3.0342j],
#         [1.5885-7.2316j,
#          -6.4314-3.9501j,
#          5.7923+4.1148j]])

my_tensor = torch.tensor([[4, 2, -9], [1, -6, 5]])

torch.conj(input=my_tensor)
torch.conj_physical(input=my_tensor)
# tensor([[4, 2, -9], [1, -6, 5]])

my_tensor = torch.tensor([[4., 2., -9.], [1., -6., 5.]])

torch.conj(input=my_tensor)
torch.conj_physical(input=my_tensor)
# tensor([[4., 2., -9.], [1., -6., 5.]])

my_tensor = torch.tensor([[True, False, True], [False, True, False]])

torch.conj(input=my_tensor)
torch.conj_physical(input=my_tensor)
# tensor([[True, False, True], [False, True, False]])
Enter fullscreen mode Exit fullscreen mode

is_conj() can check if the 0D or more D tensor of zero or more elements outputted by conj() is conjugated, getting the scalar of True of False as shown below:

*Memos:

  • is_conj() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
import torch

my_tensor = torch.tensor(4.7352+6.1584j)

torch.is_conj(input=my_tensor)
my_tensor.is_conj()
# False

""" conj() """

c_tensor = torch.conj(input=my_tensor)
c_tensor
# tensor(4.7352-6.1584j)

torch.is_conj(input=c_tensor)
# True

c_c_tensor = torch.conj(input=c_tensor)
c_c_tensor
# tensor(4.7352+6.1584j)

torch.is_conj(input=c_c_tensor)
# False

""" End """

""" conj_physical """

cp_tensor = torch.conj_physical(input=my_tensor)
cp_tensor
# tensor(4.7352-6.1584j)

torch.is_conj(input=cp_tensor)
# False

cp_cp_tensor = torch.conj_physical(input=cp_tensor)
cp_cp_tensor
# tensor(4.7352+6.1584j)

torch.is_conj(input=cp_cp_tensor)
# False

""" End """

my_tensor = torch.tensor([4.7352+6.1584j,
                          2.3706-8.4339j,
                          -9.1648-3.0342j])
torch.is_conj(input=my_tensor)
# False

my_tensor = torch.tensor([[4.7352+6.1584j,
                           2.3706-8.4339j,
                           -9.1648-3.0342j],
                          [1.5885+7.2316j,
                           -6.4314+3.9501j,
                           5.7923-4.1148j]])
torch.is_conj(input=my_tensor)
# False

my_tensor = torch.tensor([[4, 2, -9], [1, -6, 5]])

torch.is_conj(input=my_tensor)
# False

my_tensor = torch.tensor([[4., 2., -9.], [1., -6., 5.]])

torch.is_conj(input=my_tensor)
# False

my_tensor = torch.tensor([[True, False, True], [False, True, False]])

torch.is_conj(input=my_tensor)
# False
Enter fullscreen mode Exit fullscreen mode

resolve_conj() can get the new 0D or more D tensor of zero or more elements from the 0D or more D tensor of the zero or more elements conjugated from conj() as shown below:

*Memos:

  • resolve_conj() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool). *If it's not conjugated by conj(), the original tensor is just returned.
import torch

my_tensor = torch.tensor(4.7352+6.1584j)

torch.resolve_conj(input=my_tensor)
my_tensor.resolve_conj()
# tensor(4.7352+6.1584j)

c_tensor = torch.conj(input=my_tensor)
c_tensor
# tensor(4.7352-6.1584j)

torch.is_conj(input=c_tensor)
# True

rc_tensor = torch.resolve_conj(input=c_tensor)
rc_tensor
# tensor(4.7352-6.1584j)

rc_tensor.is_conj(input=rc_tensor)
# False

my_tensor = torch.tensor([4.7352+6.1584j,
                          2.3706-8.4339j,
                          -9.1648-3.0342j])
torch.resolve_conj(input=my_tensor)
# tensor([4.7352+6.1584j,
#         2.3706-8.4339j,
#         -9.1648-3.0342j])

my_tensor = torch.tensor([[4.7352+6.1584j,
                           2.3706-8.4339j,
                           -9.1648-3.0342j],
                          [1.5885+7.2316j,
                           -6.4314+3.9501j,
                           5.7923-4.1148j]])
torch.resolve_conj(input=my_tensor)
# tensor([[4.7352+6.1584j,
#          2.3706-8.4339j,
#          -9.1648-3.0342j],
#         [1.5885+7.2316j,
#          -6.4314+3.9501j,
#          5.7923-4.1148j]])

my_tensor = torch.tensor([[4, 2, -9], [1, -6, 5]])

torch.resolve_conj(input=my_tensor)
# tensor([[4, 2, -9], [1, -6, 5]])

my_tensor = torch.tensor([[4., 2., -9.], [1., -6., 5.]])

torch.resolve_conj(input=my_tensor)
# tensor([[4., 2., -9.], [1., -6., 5.]])

my_tensor = torch.tensor([[True, False, True], [False, True, False]])

torch.resolve_conj(input=my_tensor)
# tensor([[True, False, True], [False, True, False]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

Billboard image

Create up to 10 Postgres Databases on Neon's free plan.

If you're starting a new project, Neon has got your databases covered. No credit cards. No trials. No getting in your way.

Try Neon for Free →

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay