*Memos:
-
My post explains GaussianBlur() about
kernel_size
argument. -
My post explains GaussianBlur() about
sigma
argument. - My post explains OxfordIIITPet().
GaussianBlur() can randomly blur an image as shown below. *It's about kernel_size=[a, b]
and sigma=50
:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur
origin_data = OxfordIIITPet(
root="data",
transform=None
)
ks1_1s50_data = OxfordIIITPet( # `ks` is kernel_size and `s` is sigma.
root="data",
transform=GaussianBlur(kernel_size=[1, 1], sigma=50)
)
ks1_5s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[1, 5], sigma=50)
)
ks1_11s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[1, 11], sigma=50)
)
ks1_51s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[1, 51], sigma=50)
)
ks1_101s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[1, 101], sigma=50)
)
ks1_501s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[1, 501], sigma=50)
)
ks1_1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[1, 1], sigma=50)
)
ks5_1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[5, 1], sigma=50)
)
ks11_1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[11, 1], sigma=50)
)
ks51_1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[51, 1], sigma=50)
)
ks101_1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[101, 1], sigma=50)
)
ks501_1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[501, 1], sigma=50)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_1s50_data, main_title="ks1_1s50_data")
show_images1(data=ks1_5s50_data, main_title="ks1_5s50_data")
show_images1(data=ks1_11s50_data, main_title="ks1_11s50_data")
show_images1(data=ks1_51s50_data, main_title="ks1_51s50_data")
show_images1(data=ks1_101s50_data, main_title="ks1_101s50_data")
show_images1(data=ks1_501s50_data, main_title="ks1_501s50_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_1s50_data, main_title="ks1_1s50_data")
show_images1(data=ks5_1s50_data, main_title="ks5_1s50_data")
show_images1(data=ks11_1s50_data, main_title="ks11_1s50_data")
show_images1(data=ks51_1s50_data, main_title="ks51_1s50_data")
show_images1(data=ks101_1s50_data, main_title="ks101_1s50_data")
show_images1(data=ks501_1s50_data, main_title="ks501_1s50_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if ks:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
gb = GaussianBlur(kernel_size=ks, sigma=s)
plt.imshow(X=gb(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_1s50_data", ks=[1, 1], s=50)
show_images2(data=origin_data, main_title="ks1_5s50_data", ks=[1, 5], s=50)
show_images2(data=origin_data, main_title="ks1_11s50_data", ks=[1, 11], s=50)
show_images2(data=origin_data, main_title="ks1_51s50_data", ks=[1, 51], s=50)
show_images2(data=origin_data, main_title="ks1_101s50_data", ks=[1, 101],
s=50)
show_images2(data=origin_data, main_title="ks1_501s50_data", ks=[1, 501],
s=50)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_1s50_data", ks=[1, 1], s=50)
show_images2(data=origin_data, main_title="ks5_1s50_data", ks=[5, 1], s=50)
show_images2(data=origin_data, main_title="ks11_1s50_data", ks=[11, 1], s=50)
show_images2(data=origin_data, main_title="ks51_1s50_data", ks=[51, 1], s=50)
show_images2(data=origin_data, main_title="ks101_1s50_data", ks=[101, 1],
s=50)
show_images2(data=origin_data, main_title="ks501_1s50_data", ks=[501, 1],
s=50)
Top comments (0)