DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

GaussianBlur in PyTorch (3)

Buy Me a Coffee

*Memos:

GaussianBlur() can randomly blur an image as shown below. *It's about kernel_size=[a, b] and sigma=50:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ks1_1s50_data = OxfordIIITPet( # `ks` is kernel_size and `s` is sigma.
    root="data",
    transform=GaussianBlur(kernel_size=[1, 1], sigma=50)
)

ks1_5s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[1, 5], sigma=50)
)

ks1_11s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[1, 11], sigma=50)
)

ks1_51s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[1, 51], sigma=50)
)

ks1_101s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[1, 101], sigma=50)
)

ks1_501s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[1, 501], sigma=50)
)

ks1_1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[1, 1], sigma=50)
)

ks5_1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[5, 1], sigma=50)
)

ks11_1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[11, 1], sigma=50)
)

ks51_1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 1], sigma=50)
)

ks101_1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[101, 1], sigma=50)
)

ks501_1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[501, 1], sigma=50)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_1s50_data, main_title="ks1_1s50_data")
show_images1(data=ks1_5s50_data, main_title="ks1_5s50_data")
show_images1(data=ks1_11s50_data, main_title="ks1_11s50_data")
show_images1(data=ks1_51s50_data, main_title="ks1_51s50_data")
show_images1(data=ks1_101s50_data, main_title="ks1_101s50_data")
show_images1(data=ks1_501s50_data, main_title="ks1_501s50_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_1s50_data, main_title="ks1_1s50_data")
show_images1(data=ks5_1s50_data, main_title="ks5_1s50_data")
show_images1(data=ks11_1s50_data, main_title="ks11_1s50_data")
show_images1(data=ks51_1s50_data, main_title="ks51_1s50_data")
show_images1(data=ks101_1s50_data, main_title="ks101_1s50_data")
show_images1(data=ks501_1s50_data, main_title="ks501_1s50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if ks:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            gb = GaussianBlur(kernel_size=ks, sigma=s)
            plt.imshow(X=gb(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_1s50_data", ks=[1, 1], s=50)
show_images2(data=origin_data, main_title="ks1_5s50_data", ks=[1, 5], s=50)
show_images2(data=origin_data, main_title="ks1_11s50_data", ks=[1, 11], s=50)
show_images2(data=origin_data, main_title="ks1_51s50_data", ks=[1, 51], s=50)
show_images2(data=origin_data, main_title="ks1_101s50_data", ks=[1, 101],
             s=50)
show_images2(data=origin_data, main_title="ks1_501s50_data", ks=[1, 501],
             s=50)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_1s50_data", ks=[1, 1], s=50)
show_images2(data=origin_data, main_title="ks5_1s50_data", ks=[5, 1], s=50)
show_images2(data=origin_data, main_title="ks11_1s50_data", ks=[11, 1], s=50)
show_images2(data=origin_data, main_title="ks51_1s50_data", ks=[51, 1], s=50)
show_images2(data=origin_data, main_title="ks101_1s50_data", ks=[101, 1], 
             s=50)
show_images2(data=origin_data, main_title="ks501_1s50_data", ks=[501, 1],
             s=50)
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image of Docusign

Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay