DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

GaussianBlur in PyTorch (2)

Buy Me a Coffee

*Memos:

GaussianBlur() can randomly blur an image as shown below. *It's about sigma argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ks1s01_data = OxfordIIITPet( # `ks` is kernel_size.
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=0.1)
)

ks1s1_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=1)
)

ks1s5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=5)
)

ks1s10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=10)
)

ks1s15_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=15)
)

ks1s25_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=25)
)

ks1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=50)
)

ks1s01_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=[0.1, 50])
)

ks1s01_10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=[0.1, 10])
)

ks1s10_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=[10, 50])
)

ks101s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=0.1)
)

ks101s1_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=1)
)

ks101s5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=5)
)

ks101s10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=10)
)

ks101s15_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=15)
)

ks101s25_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=25)
)

ks101s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=50)
)

ks101s01_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=[0.1, 50])
)

ks101s01_10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=[0.1, 10])
)

ks101s10_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=[10, 50])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks1s1_data, main_title="ks1s1_data")
show_images1(data=ks1s5_data, main_title="ks1s5_data")
show_images1(data=ks1s10_data, main_title="ks1s10_data")
show_images1(data=ks1s15_data, main_title="ks1s15_data")
show_images1(data=ks1s25_data, main_title="ks1s25_data")
show_images1(data=ks1s50_data, main_title="ks1s50_data")
show_images1(data=ks1s01_50_data, main_title="ks1s01_50_data")
show_images1(data=ks1s01_10_data, main_title="ks1s01_10_data")
show_images1(data=ks1s10_50_data, main_title="ks1s10_50_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks101s1_data, main_title="ks101s1_data")
show_images1(data=ks101s5_data, main_title="ks101s5_data")
show_images1(data=ks101s10_data, main_title="ks101s10_data")
show_images1(data=ks101s15_data, main_title="ks101s15_data")
show_images1(data=ks101s25_data, main_title="ks101s25_data")
show_images1(data=ks101s50_data, main_title="ks101s50_data")
show_images1(data=ks101s01_50_data, main_title="ks101s01_50_data")
show_images1(data=ks101s01_10_data, main_title="ks101s01_10_data")
show_images1(data=ks101s10_50_data, main_title="ks101s10_50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if ks:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            gb = GaussianBlur(kernel_size=ks, sigma=s)
            plt.imshow(X=gb(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks1s1_data", ks=1, s=1)
show_images2(data=origin_data, main_title="ks1s5_data", ks=1, s=5)
show_images2(data=origin_data, main_title="ks1s10_data", ks=1, s=10)
show_images2(data=origin_data, main_title="ks1s15_data", ks=1, s=15)
show_images2(data=origin_data, main_title="ks1s25_data", ks=1, s=25)
show_images2(data=origin_data, main_title="ks1s50_data", ks=1, s=50)
show_images2(data=origin_data, main_title="ks1s01_50_data", ks=1,
             s=[0.1, 50])
show_images2(data=origin_data, main_title="ks1s01_10_data", ks=1,
             s=[0.1, 10])
show_images2(data=origin_data, main_title="ks1s10_50_data", ks=1,
             s=[10, 50])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks101s1_data", ks=101, s=1)
show_images2(data=origin_data, main_title="ks101s5_data", ks=101, s=5)
show_images2(data=origin_data, main_title="ks101s10_data", ks=101, s=10)
show_images2(data=origin_data, main_title="ks101s15_data", ks=101, s=15)
show_images2(data=origin_data, main_title="ks101s25_data", ks=101, s=25)
show_images2(data=origin_data, main_title="ks101s50_data", ks=101, s=50)

show_images2(data=origin_data, main_title="ks101s01_50_data", ks=101,
             s=[0.1, 50])
show_images2(data=origin_data, main_title="ks101s01_10_data", ks=101,
             s=[0.1, 10])
show_images2(data=origin_data, main_title="ks101s10_50_data", ks=101,
             s=[10, 50])
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

AWS Security LIVE!

Hosted by security experts, AWS Security LIVE! showcases AWS Partners tackling real-world security challenges. Join live and get your security questions answered.

Tune in to the full event

DEV is partnering to bring live events to the community. Join us or dismiss this billboard if you're not interested. ❤️