DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

diagflat in PyTorch

Buy Me a Coffee

*Memos:

diagflat() can create the 2D tensor of zero or more elements on the diagonal and zero or more 0, 0., 0.+0.j or False elsewhere from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • diagflat() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is offset(Optional-Default:0-Type:int).
import torch

my_tensor = torch.tensor([7, -4, 5])

torch.diagflat(input=my_tensor)
my_tensor.diagflat()
torch.diagflat(input=my_tensor, offset=0)
# tensor([[7, 0, 0],
#         [0, -4, 0],
#         [0, 0, 5]])

torch.diagflat(input=my_tensor, offset=1)
# tensor([[0, 7, 0, 0],
#         [0, 0, -4, 0],
#         [0, 0, 0, 5],
#         [0, 0, 0, 0]])

torch.diagflat(input=my_tensor, offset=-1)
# tensor([[0, 0, 0, 0],
#         [7, 0, 0, 0],
#         [0, -4, 0, 0],
#         [0, 0, 5, 0]])

torch.diagflat(input=my_tensor, offset=2)
# tensor([[0, 0, 7, 0, 0],
#         [0, 0, 0, -4, 0],
#         [0, 0, 0, 0, 5],
#         [0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0]])

torch.diagflat(input=my_tensor, offset=-2)
# tensor([[0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0],
#         [7, 0, 0, 0, 0],
#         [0, -4, 0, 0, 0],
#         [0, 0, 5, 0, 0]])

my_tensor = torch.tensor([7., -4., 5.])

torch.diagflat(input=my_tensor)
# tensor([[7., 0., 0.],
#         [0., -4., 0.],
#         [0., 0., 5.]])

my_tensor = torch.tensor([7.+0.j, -4.+0.j, 5.+0.j])

torch.diagflat(input=my_tensor)
# tensor([[7.+0.j, 0.+0.j, 0.+0.j],
#         [0.+0.j, -4.+0.j, 0.+0.j],
#         [0.+0.j, 0.+0.j, 5.+0.j]])

my_tensor = torch.tensor([True, True, True])

torch.diagflat(input=my_tensor)
# tensor([[True, False, False],
#         [False, True, False],
#         [False, False, True]])

my_tensor = torch.tensor([[7, -4, 5],
                          [-6, -3, 8],
                          [9, 1, -2]])
torch.diagflat(input=my_tensor)
torch.diagflat(input=my_tensor, offset=0)
# tensor([[7, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, -4, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 5, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, -6, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, -3, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 8, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 9, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 1, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, -2]])

torch.diagflat(input=my_tensor, offset=1)
# tensor([[0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, -4, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 5, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, -6, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, -3, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 8, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 9, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, -2],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

torch.diagflat(input=my_tensor, offset=-1)
# tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [7, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0,-4, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 5, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, -6, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, -3, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 8, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 9, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, -2, 0]])

torch.diagflat(input=my_tensor, offset=2)
# tensor([[0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

torch.diagflat(input=my_tensor, offset=-2)
# tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
#         [0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0]])
Enter fullscreen mode Exit fullscreen mode

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

AWS Industries LIVE! Stream

Business benefits of the cloud

Stream Industries LIVE! to explore innovative cloud solutions for modern businesses.

Learn More

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay