DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

log and log1p in PyTorch

Buy Me a Coffee

*Memos:

log() can get the 0D or more D tensor of the zero or more elements by ln(x) which is the natural logarithm based on e, from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • log() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • *A float tensor is returned unless an input tensor is complex tensor.
  • The formula is y = ln(x) or y = loge(x).
  • The graph in Desmos: Image description
import torch

my_tensor = torch.tensor([-0.1, 0.0, 0.1, 0.9, 1.0, 1.1, torch.e, 100.0])

torch.log(input=my_tensor)
my_tensor.log()
# tensor([nan, -inf, -2.3026, -0.1054, 0.0000, 0.0953, 1.0000, 4.6052])

my_tensor = torch.tensor([[-0.1, 0.0, 0.1, 0.9],
                          [1.0, 1.1, torch.e, 100.0]])
torch.log(input=my_tensor)
# tensor([[nan, -inf, -2.3026, -0.1054],
#         [0.0000, 0.0953, 1.0000, 4.6052]])

my_tensor = torch.tensor([[[-0.1, 0.0], [0.1, 0.9]],
                          [[1.0, 1.1], [torch.e, 100.0]]])
torch.log(input=my_tensor)
# tensor([[[nan, -inf], [-2.3026, -0.1054]],
#         [[0.0000, 0.0953], [1.0000, 4.6052]]])

my_tensor = torch.tensor([[[-0.1+0.j, 0.0+0.j], [0.1+0.j, 0.9+0.j]],
                          [[1.0+0.j, 1.1+0.j], [torch.e+0.j, 100.0+0.j]]])
torch.log(input=my_tensor)
# tensor([[[-2.3026+3.1416j, -inf+0.0000j],
#          [-2.3026+0.0000j, -0.1054+0.0000j]],
#         [[0.0000+0.0000j, 0.0953+0.0000j],
#          [1.0000+0.0000j, 4.6052+0.0000j]]])

my_tensor = torch.tensor([[[-1, 0], [1, 2]],
                          [[5, 8], [10, 100]]])
torch.log(input=my_tensor)
# tensor([[[nan, -inf], [0.0000, 0.6931]],
#         [[1.6094, 2.0794], [2.3026, 4.6052]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.log(input=my_tensor)
# tensor([[[0., -inf], [0., -inf]],
#         [[-inf, 0.], [-inf, 0.]]])
Enter fullscreen mode Exit fullscreen mode

log1p() can get the 0D or more D tensor of the zero or more elements by ln(x + 1) which is the natural logarithm based on e, from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • log1p() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • *A float tensor is returned unless an input tensor is complex tensor.
  • The formula is y = ln(x + 1) or y = loge(x + 1).
  • The graph in Desmos: Image description
import torch

my_tensor = torch.tensor([-1.1, -1.0, -0.9, -0.1, 0.0, 0.1, torch.e, 10.0])

torch.log1p(input=my_tensor)
my_tensor.log1p()
# tensor([nan, -inf, -2.3026, -0.1054, 0.0000, 0.0953, 1.3133, 2.3979])

my_tensor = torch.tensor([[-1.1, -1.0, -0.9, -0.1],
                          [0.0, 0.1, torch.e, 10.0]])
torch.log1p(input=my_tensor)
# tensor([[nan, -inf, -2.3026, -0.1054],
#         [0.0000, 0.0953, 1.3133, 2.3979]])

my_tensor = torch.tensor([[[-1.1, -1.0], [-0.9, -0.1]],
                          [[0.0, 0.1], [torch.e, 10.0]]])
torch.log1p(input=my_tensor)
# tensor([[[nan, -inf], [-2.3026, -0.1054]],
#         [[0.0000, 0.0953], [1.3133, 2.3979]]])

my_tensor = torch.tensor([[[-1.1+0.j, -1.0+0.j], [-0.9+0.j, -0.1+0.j]],
                          [[0.0+0.j, 0.1+0.j], [torch.e+0.j, 10.0+0.j]]])
torch.log1p(input=my_tensor)
# tensor([[[-2.3026+3.1416j, -inf+0.0000j],
#          [-2.3026+0.0000j, -0.1054+0.0000j]],
#         [[0.0000+0.0000j, 0.0953+0.0000j],
#          [1.3133+0.0000j, 2.3979+0.0000j]]])

my_tensor = torch.tensor([[[-1, 0], [1, 2]],
                          [[5, 8], [10, 100]]])

my_tensor = torch.tensor([[[-2, -1], [0, 1]],
                          [[2, 5], [8, 10]]])
torch.log1p(input=my_tensor)
# tensor([[[nan, -inf], [0.0000, 0.6931]],
#         [[1.0986, 1.7918], [2.1972, 2.3979]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.log1p(input=my_tensor)
# tensor([[[0.6931, 0.0000], [0.6931, 0.0000]],
#         [[0.0000, 0.6931], [0.0000, 0.6931]]])
Enter fullscreen mode Exit fullscreen mode

Image of Docusign

Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay