DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

expm1 and sigmoid in PyTorch

Buy Me a Coffee

*Memos:

expm1() can get the 0D or more D tensor of the zero or more elements by ex - 1 from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • expm1() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • *A float tensor is returned unless an input tensor is complex tensor.
  • torch.expm1() is the alias of torch.special.expm1().
  • The formula is y = ex - 1.
  • The graph in Desmos: Image description
import torch

my_tensor = torch.tensor([-2., -1., 0., 1., 2., 3.])

torch.expm1(input=my_tensor)
my_tensor.expm1()
# tensor([-0.8647, -0.6321, 0.0000, 1.7183, 6.3891, 19.0855])

my_tensor = torch.tensor([[-2., -1., 0.],
                          [1., 2., 3.]])
torch.expm1(input=my_tensor)
# tensor([[-0.8647, -0.6321, 0.0000],
#         [1.7183, 6.3891, 19.0855]])

my_tensor = torch.tensor([[-2, -1, 0],
                          [1, 2, 3]])
torch.expm1(input=my_tensor)
# tensor([[-0.8647, -0.6321, 0.0000],
#         [1.7183, 6.3891, 19.0855]])

my_tensor = torch.tensor([[-2.+0.j, -1.+0.j, 0.+0.j],
                          [1.+0.j, 2.+0.j, 3.+0.j]])
torch.expm1(input=my_tensor)
# tensor([[-0.8647+0.j, -0.6321+0.j, 0.0000+0.j],
#         [1.7183+0.j, 6.3891+0.j, 19.0855+0.j]])

my_tensor = torch.tensor([[True, False, True],
                          [False, True, False]])
torch.expm1(input=my_tensor)
# tensor([[1.7183, 0.0000, 1.7183],
#         [0.0000, 1.7183, 0.0000]])
Enter fullscreen mode Exit fullscreen mode

sigmoid() can get the 0D or more D tensor of the zero or more elements by Sigmoid function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • sigmoid() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • *A float tensor is returned unless an input tensor is complex tensor.
  • torch.sigmoid() is the alias of torch.special.expit().
  • You can also use torch.nn.Sigmoid().
  • The formula is y = 1 / (1 + e-x).
  • The graph in Desmos: Image description
import torch

my_tensor = torch.tensor([-2., -1., 0., 1., 2., 3.])

torch.sigmoid(input=my_tensor)
my_tensor.sigmoid()
# tensor([0.1192, 0.2689, 0.5000, 0.7311, 0.8808, 0.9526])

my_tensor = torch.tensor([[-2., -1., 0.],
                          [1., 2., 3.]])
torch.sigmoid(input=my_tensor)
# tensor([[0.1192, 0.2689, 0.5000],
#         [0.7311, 0.8808, 0.9526]])

my_tensor = torch.tensor([[-2, -1, 0],
                          [1, 2, 3]])
torch.sigmoid(input=my_tensor)
# tensor([[0.1192, 0.2689, 0.5000],
#         [0.7311, 0.8808, 0.9526]])

my_tensor = torch.tensor([[-2.+0.j, -1.+0.j, 0.+0.j],
                          [1.+0.j, 2.+0.j, 3.+0.j]])
torch.sigmoid(input=my_tensor)
# tensor([[0.1192+0.j, 0.2689+0.j, 0.5000+0.j],
#         [0.7311+0.j, 0.8808+0.j, 0.9526+0.j]])

my_tensor = torch.tensor([[True, False, True],
                          [False, True, False]])
torch.sigmoid(input=my_tensor)
# tensor([[0.7311, 0.5000, 0.7311],
#         [0.5000, 0.7311, 0.5000]])
Enter fullscreen mode Exit fullscreen mode

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay