DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

normal in PyTorch

Buy Me a Coffee

*Memos:

normal() can create the 0D or more D tensor of zero or more random floating-point numbers or complex numbers from normal distribution as shown below:

*Memos:

  • normal() can be used with torch but not with a tensor.
  • The 1st argument with torch is mean(Required-Type:float or complex or tensor of float or complex): *Memos:
    • Setting mean without std and size is tensor of float or complex.
    • Setting mean and std without size is float or tensor of float or complex.
    • Setting mean, std and size is float or tensor of float. *The 0D tensor of float also works.
  • The 2nd argument with torch is std(Optional-Type:float or tensor of float): *Memos:
    • It is standard deviation.
    • It must be greater than or equal to 0.
    • Setting std without size is float or tensor of float.
    • Setting std with size is float or tensor of float. *The 0D tensor of float also works.
  • The 3rd argument with torch is size(Optional-Type:tuple of int, list of int or size()): *Memos:
    • It must be used with std.
    • It must not be negative.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.normal(mean=torch.tensor([1., 2., 3.]))
# tensor([1.2713, 0.7271, 3.5027])

torch.normal(mean=torch.tensor([1.+0.j, 2.+0.j, 3.+0.j]))
# tensor([1.1918-0.9001j, 2.3555+0.2956j, 2.5479-0.4672j])

torch.normal(mean=torch.tensor([1., 2., 3.]),
             std=torch.tensor([4., 5., 6.]))
# tensor([2.0851, -4.3646, 6.0162])

torch.normal(mean=torch.tensor([1.+0.j, 2.+0.j, 3.+0.j]),
             std=torch.tensor([4., 5., 6.]))
# tensor([1.7673-3.6004j, 3.7773+1.4781j, 0.2872-2.8034j])

torch.normal(mean=torch.tensor([1., 2., 3.]), std=4.)
# tensor([2.0851, -3.0917, 5.0108])

torch.normal(mean=torch.tensor([1.+0.j, 2.+0.j, 3.+0.j]), std=4.)
# tensor([1.7673-3.6004j, 3.4218+1.1825j, 1.1914-1.8689j])

torch.normal(mean=1., std=torch.tensor([4., 5., 6.]))
# tensor([2.0851, -5.3646, 4.0162])

torch.normal(mean=1., std=4., size=())
torch.normal(mean=1., std=4., size=torch.tensor(8).size())
torch.normal(mean=torch.tensor(1.), std=torch.tensor(4.), size=())
# tensor(2.0851)

torch.normal(mean=1., std=4., size=(3,))
torch.normal(mean=1., std=4., size=torch.tensor([8, 3, 6]).size())
torch.normal(mean=torch.tensor(1.), std=torch.tensor(4.), size=(3,))
# tensor([2.0851, -4.0917, 3.0108])

torch.normal(mean=1., std=4., size=(3, 2))
torch.normal(mean=1., std=4.,
             size=torch.tensor([[8, 3], [6, 0], [2, 9]]).size())
torch.normal(mean=torch.tensor(1.), std=torch.tensor(4.), size=(3, 2))
# tensor([[2.0851, -4.0917],
#         [3.0108, 2.6723],
#         [-1.5577, -1.6431]])

torch.normal(mean=1., std=4., size=(3, 2, 4))
torch.normal(mean=torch.tensor(1.), std=torch.tensor(4.), size=(3, 2, 4))
# tensor([[[-3.7568, 6.5729, 9.4236, -0.4183],
#          [2.4840, 5.3827, 9.5657, 1.5267]],
#         [[8.0575, -0.5000, -0.3416, 5.3502],
#          [-4.3835, 1.6974, 2.6226, -1.9671]],
#         [[1.1422, 1.7790, 4.5886, -0.3273],
#          [2.8941, -3.3046, 1.1336, 2.8792]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more