DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

Set and get `dtype` in PyTorch

Buy Me a Coffee

*Memos:

You can set and get dtype as shown below:

*Memos:

tensor(). *My post explains tensor():

import torch

my_tensor = torch.tensor(data=[0, 1, 2], dtype=torch.float64)
my_tensor = torch.tensor(data=[0, 1, 2], dtype=float)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([0., 1., 2.],
#  dtype=torch.float64), torch.float64,
#  'torch.DoubleTensor')

my_tensor = torch.tensor(data=[0, 1, 2], dtype=torch.complex64)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([0.+0.j, 1.+0.j, 2.+0.j]),
#  torch.complex64,
#  'torch.ComplexFloatTensor')

my_tensor = torch.tensor(data=[0, 1, 2], dtype=torch.bool)
my_tensor = torch.tensor(data=[0, 1, 2], dtype=bool)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([False, True, True]), torch.bool, 'torch.BoolTensor')

my_tensor = torch.tensor(data=[0., 1., 2.], dtype=torch.int64)
my_tensor = torch.tensor(data=[0., 1., 2.], dtype=int)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([0, 1, 2]), torch.int64, 'torch.LongTensor')

my_tensor = torch.tensor(data=[0., 1., 2.], dtype=torch.complex64)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([0.+0.j, 1.+0.j, 2.+0.j]),
#  torch.complex64,
#  'torch.ComplexFloatTensor')

my_tensor = torch.tensor(data=[0., 1., 2.], dtype=torch.bool)
my_tensor = torch.tensor(data=[0., 1., 2.], dtype=bool)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([False, True, True]), torch.bool, 'torch.BoolTensor')

my_tensor = torch.tensor(data=[0.+0.j, 0.+7.j, 2.+0.j], dtype=torch.bool)
my_tensor = torch.tensor(data=[0.+0.j, 0.+7.j, 2.+0.j], dtype=bool)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([False, True, True]), torch.bool, 'torch.BoolTensor')

my_tensor = torch.tensor(data=[True, False, True], dtype=torch.int64)
my_tensor = torch.tensor(data=[True, False, True], dtype=int)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([1, 0, 1]), torch.int64, 'torch.LongTensor')

my_tensor = torch.tensor(data=[True, False, True], dtype=torch.float64)
my_tensor = torch.tensor(data=[True, False, True], dtype=float)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([1., 0., 1.], dtype=torch.float64),
#  torch.float64,
#  'torch.DoubleTensor')

my_tensor = torch.tensor(data=[True, False, True], dtype=torch.complex64)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([1.+0.j, 0.+0.j, 1.+0.j]),
#  torch.complex64,
#  'torch.ComplexFloatTensor')
Enter fullscreen mode Exit fullscreen mode

arange(). *My post explains arange():

import torch

my_tensor = torch.arange(start=5, end=15, step=3, dtype=torch.float64)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([5., 8., 11., 14.], dtype=torch.float64),
#  torch.float64,
#  'torch.DoubleTensor')
Enter fullscreen mode Exit fullscreen mode

rand(). *My post explains rand():

import torch

my_tensor = torch.rand(size=(3,), dtype=torch.float64)

my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([0.4620, 0.6369, 0.5189], dtype=torch.float64),
#  torch.float64,
#  'torch.DoubleTensor')
Enter fullscreen mode Exit fullscreen mode

rand_like(). *My post explains rand_like():

import torch

my_tensor = torch.rand_like(input=torch.tensor([7., 4., 5.]), 
                            dtype=torch.float64)
my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor([0.7677, 0.2914, 0.3266], dtype=torch.float64),
#  torch.float64,
#  'torch.DoubleTensor')
Enter fullscreen mode Exit fullscreen mode

sum(). *My post explains sum():

import torch

my_tensor = torch.sum(input=torch.tensor([0., 1., 2., 3.]),
                      dtype=torch.float64)
my_tensor, my_tensor.dtype, my_tensor.type()
# (tensor(6., dtype=torch.float64), torch.float64, 'torch.DoubleTensor')
Enter fullscreen mode Exit fullscreen mode

view(). *My post explains view():

import torch

my_tensor1 = torch.tensor([0., 1., 2.]).view(size=(3, 1))

my_tensor2 = my_tensor.view(dtype=torch.bool)

my_tensor1, my_tensor2, my_tensor.dtype, my_tensor.type()
# (tensor([[0.],
#          [1.],
#          [2.]]),
#  tensor([[False, False, False, False],
#          [False, False,  True,  True],
#          [False, False, False,  True]]),
#  torch.bool,
#  'torch.BoolTensor')
Enter fullscreen mode Exit fullscreen mode

Image of Timescale

PostgreSQL for Agentic AI — Build Autonomous Apps on One Stack 1️⃣

pgai turns PostgreSQL into an AI-native database for building RAG pipelines and intelligent agents. Run vector search, embeddings, and LLMs—all in SQL

Build Today

Top comments (0)

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay