DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

randn and randn_like in PyTorch

Buy Me a Coffee

*Memos:

randn() can create the 0D or more D tensor of the zero or more random floating-point numbers(Default) or complex numbers most of the time about between 2 and -2 from standard normal distribution as shown below:

*Memos:

  • randn() can be used with torch but not with a tensor.
  • The 1st or more arguments with torch are size(Required-Type:int, tuple of int, list of int or size()).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.randn(size=())
torch.randn(size=torch.tensor(8).size())
# tensor(0.3306)

torch.randn(size=(0,))
torch.randn(0)
torch.randn(size=torch.tensor([]).size())
# tensor([])

torch.randn(size=(3,))
torch.randn(3)
torch.randn(size=torch.tensor([8, 3, 6]).size())
# tensor([-0.6635,  1.6257, -2.0568])

torch.randn(size=(3, 2))
torch.randn(3, 2)
torch.randn(size=torch.tensor([[8, 3], [6, 0], [2, 9]]).size())
# tensor([[-1.9382, 1.1300], [0.4138, 0.8232], [-0.9810, -0.1410]])

torch.randn(size=(3, 2, 4))
torch.randn(3, 2, 4)
# tensor([[[-0.1585, 0.6327, -0.2487, -0.0963],
#          [-0.2869,  2.4429,  0.5098, -1.1569]],
#         [[ 0.2823,  1.0742,  1.0531, -0.2384],
#          [-0.2275, -2.6246,  0.3347, -1.6514]],
#         [[ 0.2934, -1.2568,  0.1798,  1.1989],
#          [ 0.5166, -1.2155,  0.5101, -0.7396]]])

torch.randn(size=(3, 2, 4), dtype=torch.complex64)
torch.randn(3, 2, 4, dtype=torch.complex64)
# tensor([[[0.5911+0.4230j, -0.1695-0.5487j,
#           -0.5253-1.3477j, 0.2331+1.9928j],
#          [1.1815+0.8113j, 0.1307+2.0229j,
#           0.5588+0.6502j, 0.8352-1.1519j]],
#         [[1.5789+0.5048j, -1.2516-1.0842j,
#           0.6233+0.7139j, 0.0393-0.4259j],
#          [0.1236+0.9666j, 0.2755+0.1572j,
#           -0.5766-0.0394j, -0.3715-0.2530j]],
#         [[0.6339-1.1397j, -0.1932-0.8051j,
#           1.3219-0.4141j, 0.0786+0.1172j],
#          [-0.9245+0.9382j, -1.0984+0.4884j,
#           -0.3895-0.0102j, -0.0171+0.9639j]]])
Enter fullscreen mode Exit fullscreen mode

randn_like() can replace the zero or more floating-point numbers or complex numbers of a 0D or more D tensor with the zero or more random floating-point numbers or complex numbers most of the time about between 2 and -2 from standard normal distribution as shown below:

*Memos:

  • randn_like() can be used with torch but not with a tensor.
  • The 1st argument with torch is input(Required-Type:tensor of float or complex).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
    • If it's None, it's inferred from input.
    • device= must be used.
    • My post explains device argument.
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
import torch

my_tensor = torch.tensor(7.)

torch.randn_like(input=my_tensor)
# tensor(-2.3177)

my_tensor = torch.tensor([7., 4., 5.])

torch.randn_like(input=my_tensor)
# tensor([-0.4706, -0.0940, 1.7397])

my_tensor = torch.tensor([[7., 4., 5.], [2., 8., 3.]])

torch.randn_like(input=my_tensor)
# tensor([[-0.4152, 0.8599, -2.4599],
#         [-1.1088, -0.4828, 2.3003]])

my_tensor = torch.tensor([[[7., 4., 5.], [2., 8., 3.]],
                          [[6., 0., 1.], [5., 9., 4.]]])
torch.randn_like(input=my_tensor)
# tensor([[[-1.0316, 1.5852, -1.1012], [-2.3114, 0.5584, 2.3333]],
#         [[-0.5730, -0.3688, 0.0671], [1.2493, -0.0072, 0.1905]]])

my_tensor = torch.tensor([[[7.+4.j, 4.+2.j, 5.+3.j],
                           [2.+5.j, 8.+1.j, 3.+9.j]],
                          [[6.+9.j, 0.+3.j, 1.+8.j],
                           [5.+3.j, 9.+4.j, 4.+6.j]]])
torch.randn_like(input=my_tensor)
# tensor([[[-0.3193-0.2821j, -0.8942+0.7886j, 0.2968-0.0608j],
#          [-0.5996+0.8685j, 0.7314-0.5378j, 1.7339-0.8352j]],
#         [[-0.0787-0.1357j, -1.4519-0.0295j, 0.1233-0.1794j],
#          [ 0.4109-0.2422j, 0.3973+0.3363j, -1.0303-1.4719j]]])
Enter fullscreen mode Exit fullscreen mode

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay