DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

randint and randperm in PyTorch

Buy Me a Coffee

*Memos:

randint() can create the 0D or more D tensor of the zero or more random integers(Default) or floating-point numbers between low and high-1(low<=x<=high-1) as shown below:

*Memos:

  • randint() can be used with torch but not with a tensor.
  • The 1st argument with torch is low(Optional-Default:0-Type:int): *Memos:
    • It must be lower than high.
    • The 0D or more D tensor of one integer works.
  • The 2nd argument with torch is high(Required-Type:int): *Memos:
    • It must be greater than low.
    • The 0D or more D tensor of one integer works.
  • The 3rd argument with torch is size(Required-Type:tuple of int, list of int or size()).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's torch.int64.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.randint(high=10, size=())
torch.randint(high=10, size=torch.tensor(8).size())
# tensor(7)

torch.randint(high=10, size=(3,))
torch.randint(high=10, size=torch.tensor([8, 3, 6]).size())
# tensor([7, 4, 8])

torch.randint(high=10, size=(3, 2))
torch.randint(high=10, size=torch.tensor([[8, 3], [6, 0], [2, 9]]).size())
# tensor([[8, 9], [6, 5], [5, 2]])

torch.randint(high=10, size=(3, 2, 4))
# tensor([[[1, 5, 9, 0], [4, 6, 7, 2]],
#         [[5, 2, 1, 5], [9, 3, 2, 6]],
#         [[9, 3, 6, 4], [0, 4, 7, 5]]])

torch.randint(low=10, high=20, size=(3,))
# tensor([17, 12, 10])

torch.randint(low=10, high=20, size=(3, 2))
# tensor([[14, 18], [10, 19], [15, 16]])

torch.randint(low=10, high=20, size=(3, 2, 4))
# tensor([[[16, 14, 11, 19], [19, 15, 18, 13]],
#         [[14, 10, 11, 13], [16, 11, 10, 16]], 
#         [[17, 12, 17, 10], [13, 16, 11, 10]]])

torch.randint(low=-5, high=5, size=(3,))
# tensor([-1,  2, -3])

torch.randint(low=-5, high=5, size=(3, 2))
# tensor([[-5,  4], [ 1, -1], [-4, -3]])

torch.randint(low=-5, high=5, size=(3, 2, 4))
# tensor([[[-2, 0, 1, -5], [4, -5, -3, 1]],
#         [[-4, -1, -1, -1], [-3, 2, -4, -1]],
#         [[4, -1, -5, -3], [2, -3, -2, 2]]])

torch.randint(low=-5, high=5, size=(3, 2, 4), dtype=torch.float32)
torch.randint(low=torch.tensor(-5),
              high=torch.tensor([5]),
              size=(3, 2, 4),
              dtype=torch.float32)
# tensor([[[-4., 1., -1., -3.], [-3., -5., -4., 1.]],
#         [[-5., 3., 3., 1.], [-1., 4., -5., 2.]],
#         [[-2., -4., -5., 3.], [4., 1., -3., 3.]]])

torch.randint(high=1, size=(0,))
torch.randint(low=0, high=1, size=(0,))
torch.randint(low=10, high=20, size=(0,))
# tensor([], dtype=torch.int64)
Enter fullscreen mode Exit fullscreen mode

randperm() can create the 1D tensor of zero or more random integers(Default) or floating-point numbers between 0 and n-1(0<=x<=n-1) as shown below:

*Memos:

  • randperm() can be used with torch but not with a tensor.
  • The 1st argument with torch is n(Required-Type:int): *Memos:
    • It must be greater than or equal to 1.
    • The 0D or more D tensor of one integer works.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's torch.int64.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.randperm(n=0)
# tensor([], dtype=torch.int64)

torch.randperm(n=5)
# tensor([3, 0, 4, 2, 1])

torch.randperm(n=10)
# tensor([8, 6, 9, 2, 1, 3, 5, 0, 7, 4])

torch.randperm(n=10, dtype=torch.float32)
torch.randperm(n=torch.tensor([[10]]), dtype=torch.float32)
# tensor([7., 4., 2., 1., 8., 3., 0., 6., 9., 5.])
Enter fullscreen mode Exit fullscreen mode

Image of Datadog

How to Diagram Your Cloud Architecture

Cloud architecture diagrams provide critical visibility into the resources in your environment and how they’re connected. In our latest eBook, AWS Solution Architects Jason Mimick and James Wenzel walk through best practices on how to build effective and professional diagrams.

Download the Free eBook

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay