*Memos:
- My post explains how to set and get dtype.
- My post explains how to set requires_grad and get grad.
-
My post explains
keepdimargument. -
My post explains
outargument. -
My post explains
biasargument.
You can set and get device as shown below:
*Memos:
- I selected some popular
deviceargument functions such as tensor(), arange(), rand(), rand_like(), zeros() and zeros_like(). - Basically,
device(Optional-Default:None-Type:int,stror device()). - Basically, if
deviceisNone, it's inferred from other tensor or get_default_device() is used. *My post explainsget_default_device()and set_default_device(). -
cpu,cuda,ipu,xpu,mkldnn,opengl,opencl,ideep,hip,ve,fpga,ort,xla,lazy,vulkan,mps,meta,hpu,mtiaorprivateuseonecan be set todevice. - Setting
0todeviceusescuda(GPU). *The number must be zero or positive. - Basically,
device=must be needed. - My post explains device().
- str() can get a device value.
tensor(). *My post explains tensor():
import torch
my_tensor = torch.tensor([0, 1, 2])
my_tensor = torch.tensor([0, 1, 2], device='cpu')
my_tensor = torch.tensor([0, 1, 2], device=torch.device(device='cpu'))
my_tensor = torch.tensor([0, 1, 2], device=torch.device(type='cpu'))
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0, 1, 2]), device(type='cpu'), 'cpu')
my_tensor = torch.tensor([0, 1, 2], device='cuda:0')
my_tensor = torch.tensor([0, 1, 2], device='cuda')
my_tensor = torch.tensor([0, 1, 2], device=0)
my_tensor = torch.tensor([0, 1, 2], device=torch.device(device='cuda:0'))
my_tensor = torch.tensor([0, 1, 2], device=torch.device(device='cuda'))
my_tensor = torch.tensor([0, 1, 2], device=torch.device(device=0))
my_tensor = torch.tensor([0, 1, 2], device=torch.device(type='cuda', index=0))
my_tensor = torch.tensor([0, 1, 2], device=torch.device(type='cuda'))
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0, 1, 2], device='cuda:0'), device(type='cuda', index=0), 'cuda:0')
tensor() with is_available(). *My post explains is_available():
import torch
my_device = "cuda:0" if torch.cuda.is_available() else "cpu"
my_tensor = torch.tensor([0, 1, 2], device=my_device)
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0, 1, 2], device='cuda:0'), device(type='cuda', index=0), 'cuda:0')
arange(). *My post explains arange():
import torch
my_tensor = torch.arange(start=5, end=15, step=3, device='cpu')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([5, 8, 11, 14]), device(type='cpu'), 'cpu')
my_tensor = torch.arange(start=5, end=15, step=3, device='cuda:0')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([5, 8, 11, 14], device='cuda:0'),
# device(type='cuda', index=0),
# 'cuda:0')
rand(). *My post explains rand():
import torch
my_tensor = torch.rand(size=(3,), device='cpu')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0.2782, 0.3780, 0.6509]), device(type='cpu'), 'cpu')
my_tensor = torch.rand(size=(3,), device='cuda:0')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0.1052, 0.9281, 0.0151], device='cuda:0'),
# device(type='cuda', index=0),
# 'cuda:0')
rand_like(). *My post explains rand_like():
import torch
my_tensor = torch.rand_like(input=torch.tensor([7., 4., 5.]),
device='cpu')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0.9130, 0.7072, 0.1935]), device(type='cpu'), 'cpu')
my_tensor = torch.rand_like(input=torch.tensor([7., 4., 5.]),
device='cuda:0')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0.3655, 0.6319, 0.3045], device='cuda:0'),
# device(type='cuda', index=0),
# 'cuda:0')
zeros(). *My post explains zeros():
import torch
my_tensor = torch.zeros(size=(3,), device='cpu')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0., 0., 0.]), device(type='cpu'), 'cpu')
my_tensor = torch.zeros(size=(3,), device='cuda:0')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0., 0., 0.], device='cuda:0'),
# device(type='cuda', index=0),
# 'cuda:0')
zeros_like(). *My post explains zeros_like():
import torch
my_tensor = torch.zeros_like(input=torch.tensor([7., 4., 5.]),
device='cpu')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0., 0., 0.]), device(type='cpu'), 'cpu')
my_tensor = torch.zeros_like(input=torch.tensor([7., 4., 5.]),
device='cuda:0')
my_tensor, my_tensor.device, str(my_tensor.device)
# (tensor([0., 0., 0.], device='cuda:0'),
# device(type='cuda', index=0),
# 'cuda:0')
Top comments (0)