DEV Community

parmarjatin4911@gmail.com
parmarjatin4911@gmail.com

Posted on

Embedding Impact Across Model Configurations

Embedding Impact Across Model Configurations

Fine-tuning a model like ChatGPT with embeddings involves a few steps. Here’s a simplified outline of the process:

Embedding Generation:

Use an embedding model (e.g., BERT, Word2Vec) to generate embeddings for your data.
Enter fullscreen mode Exit fullscreen mode

python generate_embeddings.py --data_file --embedding_file

Prepare Data:

Combine embeddings with your data in a format suitable for training.
Enter fullscreen mode Exit fullscreen mode

python prepare_data.py --embedding_file --output_file

Fine-tuning:

Use the prepared data to fine-tune ChatGPT.
Enter fullscreen mode Exit fullscreen mode

python run_finetuning.py --model_name_or_path gpt-3.5-turbo --train_file --output_dir

Evaluation:

Evaluate the fine-tuned model on a separate dataset to check the performance.
Enter fullscreen mode Exit fullscreen mode

python evaluate.py --model_name_or_path --eval_file

Example

Below are simplified example scripts and data file content to give you an idea of how this process might be structured.

Example Content of data_file:
Enter fullscreen mode Exit fullscreen mode

question: What is the capital of France? | answer: Paris
question: What is the capital of Germany? | answer: Berlin
...

generate_embeddings.py:
Enter fullscreen mode Exit fullscreen mode

from transformers import BertTokenizer, BertModel
import torch

def generate_embeddings(data_file, embedding_file):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

with open(data_file, 'r') as f:
    data = f.readlines()

embeddings = []
for line in data:
    inputs = tokenizer(line, return_tensors='pt', truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
    embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist())

with open(embedding_file, 'w') as f:
    for embedding in embeddings:
        f.write(','.join(map(str, embedding)) + '\n')
Enter fullscreen mode Exit fullscreen mode

if name == "main":
generate_embeddings('', '')

prepare_data.py:
Enter fullscreen mode Exit fullscreen mode

def prepare_data(embedding_file, training_data):
with open(embedding_file, 'r') as ef, open(training_data, 'w') as tf:
for line in ef:
embedding = line.strip()
tf.write(embedding + '\n')

if name == "main":
prepare_data('', '')

run_finetuning.py:
Enter fullscreen mode Exit fullscreen mode

from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments

def fine_tune(training_data, output_dir):
tokenizer = GPT2Tokenizer.from_pretrained('gpt-2')
model = GPT2LMHeadModel.from_pretrained('gpt-2')

train_dataset = TextDataset(
    tokenizer=tokenizer,
    file_path=training_data,
    block_size=128,
)

data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer,
    mlm=False,
)

training_args = TrainingArguments(
    output_dir=output_dir,
    overwrite_output_dir=True,
    num_train_epochs=1,
    per_device_train_batch_size=32,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=train_dataset,
)

trainer.train()
Enter fullscreen mode Exit fullscreen mode

if name == "main":
fine_tune('', '')

evaluate.py:
Enter fullscreen mode Exit fullscreen mode

from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline
import torch

def evaluate(model_path, eval_file):
# Load the fine-tuned model and tokenizer
model = GPT2LMHeadModel.from_pretrained(model_path)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)

# Create a text generation pipeline
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

# Read the evaluation data
with open(eval_file, 'r') as f:
    eval_data = f.readlines()

# Iterate through the evaluation data and generate responses
for i, prompt in enumerate(eval_data):
    generated_text = text_generator(prompt, max_length=150, do_sample=True, temperature=0.7)
    print(f'{i+1}. Prompt: {prompt.strip()}\n   Generated: {generated_text[0]["generated_text"]}\n')

# Optionally, compute some evaluation metrics (e.g., BLEU, perplexity)
# ...
Enter fullscreen mode Exit fullscreen mode

if name == "main":
evaluate('', '')

Replace placeholders like , , , and with your actual file paths. Note: these scripts are simplified examples and may not work out of the box for your specific scenario.

Based on the gathered data, here is a detailed comparison table that incorporates the differences between a Normal Model, Directly Fine-tuned Model, Fine-tuned with Embeddings, and Not Fine-tuned but with Embeddings:

Image description

The accuracy between these configurations may vary based on the specific task and data. Fine-tuning directly and using embeddings are both valid strategies, but their suitability may vary depending on the specific requirements and constraints of your project.

Top comments (0)