DEV Community

Cover image for Exploratory Data Analysis using Data Visualization Techniques
Victor Alando
Victor Alando

Posted on

Exploratory Data Analysis using Data Visualization Techniques

Exploratory Data Analysis (EDA) is a crucial step in understanding and gaining insights from your data. Data visualization techniques play a key role in this process by helping you explore, summarize, and interpret your data. Here's a step-by-step guide on how to perform EDA using data visualization techniques:

  1. Import Visualization Libraries

Start by importing data analysis and visualization libraries like Pandas, NumPy, and Matplotlib or Seaborn

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns



Enter fullscreen mode Exit fullscreen mode

2.Load your CSV (Comma Separated Values) dataset

df = pd.read_csv('your_dataset.csv')
Enter fullscreen mode Exit fullscreen mode

3.Initial Data Inspection

Explore the structure of your data by checking its dimensions, the first few rows, and summary statistics.

# Display the first few rows

df = pd.read_csv('your_dataset.csv')

print(df.head())

# Check data summary
print(df.describe())
Enter fullscreen mode Exit fullscreen mode

4.Data Cleaning

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset. When combining multiple data sources, there are many opportunities for data to be duplicated or mislabeled.

Handle missing values, outliers, and any inconsistencies in your data.

# Check for missing values
print(df.isnull().sum())

# Handle missing values
df.dropna(inplace=True)

# Detect and handle outliers
# Example: df = df[(df['column'] >= lower_bound) & (df['column'] <= upper_bound)]
Enter fullscreen mode Exit fullscreen mode

5.Univariate Analysis

Explore individual variables in your dataset using various types of plots.

  • Histograms for continuous variables.
  • Bar charts for categorical variables.
  • Box plots for identifying outliers.
# Histogram
plt.hist(df['column'], bins=20)
plt.xlabel('X-axis label')
plt.ylabel('Y-axis label')
plt.title('Histogram of a Variable')
plt.show()
Enter fullscreen mode Exit fullscreen mode

6.Bivariate Analysis

Investigate relationships between pairs of variables.

  • Scatter plots for continuous variables.
  • Bar plots for comparing categories.
  • Correlation matrices to understand relationships.
# Scatter plot
plt.scatter(df['x_variable'], df['y_variable'])
plt.xlabel('X-axis label')
plt.ylabel('Y-axis label')
plt.title('Scatter Plot')
plt.show()
Enter fullscreen mode Exit fullscreen mode

7.Multivariate Analysis

Analyze relationships among multiple variables simultaneously.

  • Pair plots for multiple scatter plots.
  • Heatmaps to visualize correlations
# Pair plot
sns.pairplot(df)
plt.show()

# Correlation heatmap
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True)
plt.show()
Enter fullscreen mode Exit fullscreen mode

8.Time-Series Analysis (if applicable)

If your dataset involves time series data, use line plots, seasonal decomposition, and autocorrelation plots to understand trends and patterns.

# Time-series line plot
df['date_column'] = pd.to_datetime(df['date_column'])
df.set_index('date_column', inplace=True)
plt.plot(df['time_series_variable'])
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Time Series Data')
plt.show()
Enter fullscreen mode Exit fullscreen mode

9.Final Insights and Interpretation
Summarize your findings, draw conclusions, and make informed decisions based on your data exploration.

10.Report and Visualization
Create a report or presentation to share your insights using tools like Jupyter Notebook, RMarkdown, or data visualization libraries. Visualize your findings with meaningful charts and graphs to make them easy to understand.

Top comments (0)