๐ค๐ Smart Search Meets LLM: AWS-Powered Retrieval-Augmented Generation
Leverage AWS-native services to build a Retrieval-Augmented Generation (RAG) agent that can answer questions based on your internal knowledge base. Use Amazon Bedrock, OpenSearch, and LangChain to create an intelligent, secure, and scalable Q&A system.
๐ ๏ธ Tech Stack
- LangChain โ for building RAG pipeline
- Amazon Bedrock โ for LLMs (Claude, Titan, etc.)
- OpenSearch or Bedrock Knowledge Base โ for vector storage
- S3 โ to store documents
- Titan Embeddings โ for semantic search
๐ฆ Install Dependencies
pip install langchain boto3 openai
๐ AWS Authentication
Set up AWS CLI or environment variables:
aws configure
Or:
export AWS_ACCESS_KEY_ID=your_key
export AWS_SECRET_ACCESS_KEY=your_secret
export AWS_REGION=us-east-1
๐ Code: RAG Agent with AWS Vector Store
import boto3
from langchain.llms.bedrock import Bedrock
from langchain.chains import RetrievalQA
from langchain.vectorstores import OpenSearchVectorSearch
from langchain.embeddings import BedrockEmbeddings
# 1. Configure LLM and Embeddings
llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-east-1")
embedding = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1", region_name="us-east-1")
# 2. Connect to OpenSearch (or use Bedrock Knowledge Base)
opensearch = OpenSearchVectorSearch(
opensearch_url="https://your-domain.us-east-1.es.amazonaws.com",
index_name="your-index-name",
embedding=embedding
)
# 3. Create RAG pipeline
qa = RetrievalQA.from_chain_type(llm=llm, retriever=opensearch.as_retriever(), return_source_documents=True)
# 4. Ask a question
query = "How does the AWS knowledge base vector search work?"
result = qa({"query": query})
print("Answer:", result["result"])
print("Sources:", result["source_documents"])
๐ Optional: Use AWS Bedrock Knowledge Base
You can simplify vector storage using Amazon Bedrock Knowledge Base:
Upload your documents to S3.
Create a Knowledge Base via AWS Console.
AWS handles chunking, embeddings, and search.
Retrieve results using Bedrock APIs or LangChain's BedrockRetriever.
๐ Folder Structure Example
.
โโโ docs/
โ โโโ knowledge_base/ # Local or S3 documents
โโโ rag_aws_agent.py # Main script
๐ Whatโs Next?
๐งพ Support more file types (PDF, CSV, Markdown)
๐ง Add an agent with memory and tools
๐ Create a web interface using Streamlit or FastAPI
๐ Use IAM roles for secure access
๐พ Store logs and audit trails for responses
๐ก Catchy Titles You Can Use
"Chat with Your AWS Docs: Build a RAG Agent with Amazon Bedrock"
"RAG-as-a-Service: Scalable AI Q&A on AWS with LangChain"
"From S3 to Smart Search: Building a RAG Bot on AWS"
"Amazon Bedrock Meets LangChain: Create Your Own Q&A Assistant"
โ
Summary
You now have a working RAG agent that:
Retrieves content from your AWS-hosted knowledge base
Uses Titan Embeddings and Claude for smart answers
Is scalable, secure, and easily extensible
Want this turned into a full repo, Streamlit demo, or Docker package? Just ask!
Top comments (2)
Brilliant! This could be an awesome base for building an enterprise-grade internal knowledge assistant.
This is a fantastic breakdown of RAG implementation with AWS! Love the clarity on how the components interact.