🔁 Building a Feedback Loop for RAG with LangChain and Docker
Retrieval-Augmented Generation (RAG) is great — until your LLM starts hallucinating or retrieving outdated context. That’s where a feedback loop comes in.
In this post, we’ll build a simple RAG pipeline with LangChain, containerize it using Docker, and add a feedback mechanism to make it smarter over time.
🧠 Why Feedback Matters in RAG
A RAG system has two parts:
- Retriever — fetches relevant documents from a vector store.
- Generator — produces an answer using the retrieved context.
Without feedback, your model never learns from mistakes.
A feedback loop lets you:
- Re-rank documents that users find more useful.
- Fine-tune retrievers based on query–document relevance.
- Measure response quality (faithfulness, groundedness, etc.).
⚙️ Step 1: Build a Minimal RAG Pipeline
Let’s start with a simple LangChain setup:
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import TextLoader
# Load documents
loader = TextLoader("data/policies.txt")
docs = loader.load()
# Create embeddings and vector store
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(docs, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 3})
# Define RAG pipeline
qa = RetrievalQA.from_chain_type(
llm=ChatOpenAI(model_name="gpt-4o-mini"),
retriever=retriever,
return_source_documents=True
)
query = "What is the latest leave policy?"
response = qa({"query": query})
print(response["result"])
💬 Step 2: Add a Feedback Collector
After displaying the result, log user feedback (thumbs up/down) into a simple JSON or database.
import json, datetime
def log_feedback(query, response, rating):
entry = {
"timestamp": str(datetime.datetime.now()),
"query": query,
"response": response,
"rating": rating
}
with open("feedback.json", "a") as f:
json.dump(entry, f)
f.write("\n")
You can later parse this feedback file to improve your retriever — e.g., re-weighting embeddings or filtering irrelevant sources.
🔄 Step 3: Close the Feedback Loop
Use libraries like TruLens or Ragas to automatically evaluate and fine-tune based on feedback:
from trulens_eval import Feedback, TruChain, Select
tru_qa = TruChain(chain=qa, app_id="rag-feedback-demo")
feedback_quality = Feedback(name="helpfulness")
tru_qa.add_feedback(feedback_quality)
tru_qa.evaluate([{"query": query, "response": response["result"]}])
🐳 Step 4: Containerize with Docker
Create a simple Dockerfile:
FROM python:3.10-slim
WORKDIR /app
COPY . .
RUN pip install langchain openai faiss-cpu trulens-eval
ENV OPENAI_API_KEY=your_api_key
CMD ["python", "rag_feedback.py"]
Then build and run:
docker build -t rag-feedback .
docker run -e OPENAI_API_KEY=$OPENAI_API_KEY rag-feedback
🚀 Step 5: Scale & Iterate
- Deploy your RAG system as a microservice behind an API.
- Stream feedback data to a shared database (Postgres, MongoDB).
- Periodically retrain or re-index your vector store based on positive/negative signals.
🧩 Summary
By integrating LangChain, Docker, and a feedback loop, you get a self-improving RAG system that learns what “good” looks like from real usage.
This loop not only boosts retrieval precision but also reduces hallucination and improves trust in your AI answers.
💡 Next Steps
- Add automated evaluation with Ragas
- Serve your feedback endpoint via FastAPI
- Store embeddings and feedback in a persistent vector DB like Weaviate or Pinecone
Top comments (0)