๐ Building a Feedback Loop for RAG with LangChain and Docker
Retrieval-Augmented Generation (RAG) is great โ until your LLM starts hallucinating or retrieving outdated context. Thatโs where a feedback loop comes in.
In this post, weโll build a simple RAG pipeline with LangChain, containerize it using Docker, and add a feedback mechanism to make it smarter over time.
๐ง Why Feedback Matters in RAG
A RAG system has two parts:
- Retriever โ fetches relevant documents from a vector store.
- Generator โ produces an answer using the retrieved context.
Without feedback, your model never learns from mistakes.
A feedback loop lets you:
- Re-rank documents that users find more useful.
- Fine-tune retrievers based on queryโdocument relevance.
- Measure response quality (faithfulness, groundedness, etc.).
โ๏ธ Step 1: Build a Minimal RAG Pipeline
Letโs start with a simple LangChain setup:
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import TextLoader
# Load documents
loader = TextLoader("data/policies.txt")
docs = loader.load()
# Create embeddings and vector store
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(docs, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 3})
# Define RAG pipeline
qa = RetrievalQA.from_chain_type(
llm=ChatOpenAI(model_name="gpt-4o-mini"),
retriever=retriever,
return_source_documents=True
)
query = "What is the latest leave policy?"
response = qa({"query": query})
print(response["result"])
๐ฌ Step 2: Add a Feedback Collector
After displaying the result, log user feedback (thumbs up/down) into a simple JSON or database.
import json, datetime
def log_feedback(query, response, rating):
entry = {
"timestamp": str(datetime.datetime.now()),
"query": query,
"response": response,
"rating": rating
}
with open("feedback.json", "a") as f:
json.dump(entry, f)
f.write("\n")
You can later parse this feedback file to improve your retriever โ e.g., re-weighting embeddings or filtering irrelevant sources.
๐ Step 3: Close the Feedback Loop
Use libraries like TruLens or Ragas to automatically evaluate and fine-tune based on feedback:
from trulens_eval import Feedback, TruChain, Select
tru_qa = TruChain(chain=qa, app_id="rag-feedback-demo")
feedback_quality = Feedback(name="helpfulness")
tru_qa.add_feedback(feedback_quality)
tru_qa.evaluate([{"query": query, "response": response["result"]}])
๐ณ Step 4: Containerize with Docker
Create a simple Dockerfile:
FROM python:3.10-slim
WORKDIR /app
COPY . .
RUN pip install langchain openai faiss-cpu trulens-eval
ENV OPENAI_API_KEY=your_api_key
CMD ["python", "rag_feedback.py"]
Then build and run:
docker build -t rag-feedback .
docker run -e OPENAI_API_KEY=$OPENAI_API_KEY rag-feedback
๐ Step 5: Scale & Iterate
- Deploy your RAG system as a microservice behind an API.
- Stream feedback data to a shared database (Postgres, MongoDB).
- Periodically retrain or re-index your vector store based on positive/negative signals.
๐งฉ Summary
By integrating LangChain, Docker, and a feedback loop, you get a self-improving RAG system that learns what โgoodโ looks like from real usage.
This loop not only boosts retrieval precision but also reduces hallucination and improves trust in your AI answers.
๐ก Next Steps
- Add automated evaluation with Ragas
- Serve your feedback endpoint via FastAPI
- Store embeddings and feedback in a persistent vector DB like Weaviate or Pinecone
Top comments (0)