Overview
Lane detection is one of the most crucial technique of ADAS and has received significant attention recently. In this project, we achived lane detection with real time by numpy and multi-thread.
Dependencies:
Python
Numpy
Opencv
How to Run:
Run lane_detection.py. The default video is project_video, if you want to process the "fog_video.mp4", change video_index to 1 in line 9.
full source code:
import numpy as np
import cv2
import time
from threading import Thread
from queue import Queue
defualt video number, if you want to process the "fog_video.mp4", change video_index to 1
video_index = 0
the result of lane detection, we add the road to the main frame
road = np.zeros((720, 1280, 3))
A flag which means the process is started
started = 0
Pipeline combining color and gradient thresholding
def thresholding_pipeline(img, s_thresh=(90, 255), sxy_thresh=(20, 100)):
img = np.copy(img)
# 1: Convert to HSV color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float)
h_channel = hls[:, :, 0]
l_channel = hls[:, :, 1]
s_channel = hls[:, :, 2]
2: Calculate x directional gradient
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x
# Absolute x derivative to accentuate lines away from horizontal
abs_sobelx = np.absolute(sobelx)
scaled_sobelx = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
sxbinary = np.zeros_like(scaled_sobelx)
sxbinary[(scaled_sobelx >= sxy_thresh[0]) &
(scaled_sobelx <= sxy_thresh[1])] = 1
grad_thresh = sxbinary
3: Color Threshold of s channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
4: Combine the two binary thresholds
combined_binary = np.zeros_like(grad_thresh)
combined_binary[(s_binary == 1) | (grad_thresh == 1)] = 1
return combined_binary
Apply perspective transformation to bird's eye view
def perspective_transform(img, src_mask, dst_mask):
img_size = (img.shape[1], img.shape[0])
src = np.float32(src_mask)
dst = np.float32(dst_mask)
M = cv2.getPerspectiveTransform(src, dst)
warped_img = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
return warped_img
Implement Sliding Windows and Fit a Polynomial
def sliding_windows(binary_warped, nwindows=9):
histogram = np.sum(
binary_warped[int(binary_warped.shape[0]/2):, :], axis=0)
Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (
nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (
nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit, lefty, leftx, righty, rightx
Warp lane line projection back to original image
def project_lanelines(binary_warped, orig_img, left_fit, right_fit, dst_mask, src_mask):
global road
global started
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])
left_fitx = left_fit[0]ploty2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty*2 + right_fit[1]*ploty + right_fit[2]
Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array(
[np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
warped_inv = perspective_transform(color_warp, dst_mask, src_mask)
road = warped_inv
started = 1
Main process functions
def main_pipeline(input):
step 1 select the ROI, and we need to distort the image for fog_video
if video_index == 0:
image = input
top_left = [540, 460]
top_right = [754, 460]
bottom_right = [1190, 670]
bottom_left = [160, 670]
else:
mtx = np.array([[1.15396467e+03, 0.00000000e+00, 6.69708251e+02], [0.00000000e+00, 1.14802823e+03, 3.85661017e+02],
[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
dist = np.array([[-2.41026561e-01, -5.30262184e-02, -
1.15775369e-03, -1.27924043e-04, 2.66417032e-02]])
image = cv2.undistort(input, mtx, dist, None, mtx)
top_left = [240, 270]
top_right = [385, 270]
bottom_right = [685, 402]
bottom_left = [0, 402]
src_mask = np.array([[(top_left[0], top_left[1]), (top_right[0], top_right[1]),
(bottom_right[0], bottom_right[1]), (bottom_left[0], bottom_left[1])]], np.int32)
dst_mask = np.array([[(bottom_left[0], 0), (bottom_right[0], 0),
(bottom_right[0], bottom_right[1]), (bottom_left[0], bottom_left[1])]], np.int32)
Step 2 Thresholding: color and gradient thresholds to generate a binary image
binary_image = thresholding_pipeline(image, s_thresh=(90, 255))
Step 3 Perspective transform on binary image:
binary_warped = perspective_transform(binary_image, src_mask, dst_mask)
Step 4 Fit Polynomial
left_fit, right_fit, lefty, leftx, righty, rightx = sliding_windows(
binary_warped, nwindows=9)
Step 5 Project Lines
project_lanelines(binary_warped, image, left_fit,
right_fit, dst_mask, src_mask)
if name == 'main':
frames_counts = 1
if video_index == 0:
cap = cv2.VideoCapture('project_video.mp4')
else:
cap = cv2.VideoCapture('fog_video.mp4')
class MyThread(Thread):
def init(self, q):
Thread.init(self)
self.q = q
def run(self):
while(1):
if (not self.q.empty()):
image = self.q.get()
main_pipeline(image)
q = Queue()
q.queue.clear()
thd1 = MyThread(q)
thd1.setDaemon(True)
thd1.start()
while (True):
start = time.time()
ret, frame = cap.read()
Detect the lane every 5 frames
if frames_counts % 5 == 0:
q.put(frame)
Add the lane image on the original frame if started
if started:
frame = cv2.addWeighted(frame, 1, road, 0.5, 0)
cv2.imshow("RealTime_lane_detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
frames_counts += 1
cv2.waitKey(12)
finish = time.time()
print('FPS: ' + str(int(1/(finish-start))))
cap.release()
cv2.destroyAllWindows()
Github link:
https://github.com/nimadorostkar/realtime_lane_detection
Top comments (0)