

 Skip to content

 Log in

 Create account

 DEV Community

 Add reaction

 Like

 Unicorn

 Exploding Head

 Raised Hands

 Fire

 Jump to Comments

 Save

 Copy link

Copied to Clipboard

 Share to Twitter

 Share to LinkedIn

 Share to Reddit

 Share to Hacker News

 Share to Facebook

 Share to Mastodon

 Share Post via...

 Report Abuse

 Damien Clauzon
 for Theodo

 Posted on Dec 12, 2023

 • Originally published at blog.theodo.com

 How to Simply Generate a PDF From HTML in Symfony With WeasyPrint

 #tutorial
 #php
 #symfony
 #pdf

 A thousand PDF generation solutions, but which one to choose?

Recently, I was faced with a problem that many developers fear and avoid: generating a PDF document.

There are lots of libraries handling this, the problem is knowing which one best fits your project. For my specific use case, I had to generate printable documents from HTML in a Symfony application.

Let's see why WeasyPrint fits this job perfectly, and what you need to know before using it on your own.

 What about Snappy and wkhtmltopdf, the recommendation of Symfony?

When I first looked for solutions to generate a PDF document in a Symfony application, I was amazed to find that a SymfonyCast was made about this. It features the PHP library Snappy, which is essentially a wrapper around wkhtmltopdf.

There are unfortunately many problems with this library, some of which are presented on the website:

	 Its CSS interpreter does not allow flexbox or grid, but only webkit extensions which are very limited.
	 The last update of its engine (QtWebKit4) was in 2015, and it was dropped from most community repositories, including Alpine Linux. It has several critical security issues that will never be patched, mostly about remote code execution when using untrusted HTML.
	 When choosing a library for a project, it is important to consider its maintenance status. In this case, wkhtmltopdf has stopped being maintained in 2020 and there are no plans to continue development. Therefore, most issues about Snappy will never get fixed.

As a consequence, I highly discourage you from using it as it is no longer a viable solution for generating PDF documents.

I was disappointed to learn that it was unusable, but fortunately, many of its users found a drop-in replacement and fell in love with it: WeasyPrint.

 What is WeasyPrint?

WeasyPrint is a solution for creating PDF documents from HTML. It has a lot of features regarding pagination which are easy to use and predictable. You can find the list of all supported features on their website, as well as examples of complex PDFs such as reports, invoices, books, and more.

It utilizes its own visual rendering engine for HTML and CSS aiming to support web standards for printing that is implemented in Python. However, it does not support JavaScript execution.

The advantage of this approach is that it can be used as a command-line tool with other languages, just like the bundle for Symfony that I will present in this article!

 You can easily do pagination

WeasyPrint uses its CSS layout engine designed for pagination, supporting parts of the CSS specifications written by the W3C. Most of the flex layout is implemented, and there is also a ton of supported features for paginated documents:

	 Support for the @page at-rule to specify the document size, orientation, margin

	 Support for page breaks with the CSS property page-break-before

	 Support for footnotes

	 Support for page numbers and page selectors (you can even code a table of contents!)
	 Support for fetching fonts with the usual syntax <link href="https://www.example.com/font" rel="stylesheet" />

But there are unfortunately cons to this approach, as it is not a browser engine some CSS features are missing:

	 The grid layout (sob)
	 The gap property

	 CSS filters, including shadows
	 CSS for SVG, therefore using the tag is better suited than including your SVG with the inline <svg /> tag to avoid the sanitizing step

A test suite is available for verifying the correct implementation of CSS guidelines.

 You can generate high-quality documents

WeasyPrint supports many PDF features that make it a great tool for generating high-quality documents:

	 generation of PDF/A documents, which is the ISO-standardized version allowing original formatting across different devices
	 bookmarks generated by heading elements (<h1> to <h6>)
	 hyperlinks, internal to the document such as a table of contents, or external such as a website link
	 vector images and text, meaning that you can zoom in without compression artifacts; this is especially useful for generating and including bar codes and QR codes on your PDF
	 basic support for PDF forms (at the moment only text inputs, text areas, and checkboxes)

Furthermore, WeasyPrint can find any font installed on your system with the help of fontconfig, which is useful to avoid fetching fonts from external stylesheets whenever you generate a PDF. You can check what fonts are installed on your system with fc-list.

 Generate your first PDF with WeasyPrint

 Rendering HTML with Twig

The first step before generating the PDF is writing the HTML. To generate the HTML string, we will use the Twig template engine, which is the default one in Symfony. It comes with tons of features such as inheritance, blocks, filters, functions, and more.

You can install Twig with the following bundle provided by Symfony.

composer require symfony/twig-bundle

The bundle comes with a configuration file located in config/packages/twig.yaml, providing a default path for your templates. You can read more about the template engine here.

Create a template in the templates directory of your Symfony application:

<!-- base.html.twig -->

<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello world</title>
 <style>
 .title {
 background-color: #dcb03f;
 padding: 10px;
 text-align: center;
 }
 </style>
 </head>
 <body>
 <h1 class="title">Hello world!</h1>
 </body>
</html>

The HTML can now be generated from this template using the \Twig\Environment->render method. To do this, write a simple controller that returns the HTML:

// MyPdfController.php

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;
use Twig\Environment;

class PdfController extends AbstractController
{
 public function __construct(
 private readonly Environment $twig,
) {}

 #[Route('/my-pdf-controller', name: 'my-pdf-controller')]
 public function pdfController(): Response
 {
 $html = $this->twig->render('base.html.twig');

 return new Response($html);
 }
}

You can now test the endpoint by visiting /my-pdf-controller in your browser. You should see your HTML rendered!

 Never trust user HTML!

As with any other tool, you should avoid using untrusted HTML, CSS, and images, because WeasyPrint has access to local files and can make network requests. Always sanitize user inputs! This can be done with the filter escape in Twig. You can find a list of other possible attacks with advice to avoid them on the WeasyPrint documentation.

Performance is not the strength of WeasyPrint, meaning that heavy HTML files will increase generation time. You should always compress images before attaching them, as they are not compressed by default. Generating a 50-page-long PDF may take up to a minute in extreme cases, although multi-page documents generated on my project take fewer than 2 seconds to generate.

 Generating PDF from your HTML

You will need to install the weasyprint binary separately from the Symfony bundle, as WeasyPrint does not have a native PHP implementation.

This step may depend on your distribution and/or environment, see the installation page for reference. If you use Docker with an Alpine distribution, you can install it by adding the following lines:

Dockerfile (Alpine distribution)

RUN apk add --no-cache \
 weasyprint \
 # used to find and configure fonts
 fontconfig \
 # used to render TrueType fonts
 freetype \
 # used as a default font
 ttf-dejavu \
 ;

Do not forget to install a default font on your system! This is useful to have as a fallback, otherwise the binary may crash when attempting to render text. On Alpine Linux, you can install the ttf-dejavu package to avoid this issue.

You can then install the bundle that allows running WeasyPrint from our Symfony application:

composer require pontedilana/weasyprint-bundle

Inject the newly installed service in your controller, and modify the response to return a PDF instead of HTML:

// MyPdfController.php

use Pontedilana\PhpWeasyPrint\Pdf;
use Pontedilana\WeasyprintBundle\WeasyPrint\Response\PdfResponse;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\ResponseHeaderBag;
use Symfony\Component\Routing\Annotation\Route;
use Twig\Environment;

class PdfController extends AbstractController
{
 public function __construct(
 private readonly Environment $twig,
 private readonly Pdf $weasyPrint,
) {
 }

 #[Route('/pdf', name: 'pdf')]
 public function pdf(): Response
 {
 $html = $this->twig->render('base.html.twig');
 $pdfContent = $this->weasyPrint->getOutputFromHtml($html);

 return new PdfResponse(
 content: $pdfContent,
 fileName: 'file.pdf',
 contentType: 'application/pdf',
 contentDisposition: ResponseHeaderBag::DISPOSITION_INLINE,
 // or download the file instead of displaying it in the browser with
 // contentDisposition: ResponseHeaderBag::DISPOSITION_ATTACHMENT,
 status: 200,
 headers: []
);
 }
}

You are now ready to generate a basic PDF in your application!

 Going further: what about the other PDF generation libraries?

Working on my project with WeasyPrint was a breeze: it is easy to set up, its repository is well maintained, it satisfies all the needs I had for pagination and it allowed me to generate high-quality PDF documents from re-usable Twig templates.

However, WeasyPrint is not the only solution available, and there might be other solutions that suit your use case better:

	 If WeasyPrint does not fit your needs, you can find a comparison of other HTML to PDF libraries here

	 If you also want to convert Markdown or LibreOffice formats, the self-hosted API Gotenberg is worth checking out
	 If you want to convert an existing page, need to use JavaScript, or want your PDF rendered by a browser, take a look at this article about Puppeteer

 Top comments (1)

 Subscribe

 Personal
 Trusted User

 Create template

 Templates let you quickly answer FAQs or store snippets for re-use.

 Submit
 Preview
 Dismiss

 Julien Dephix

 Julien Dephix

 Julien Dephix

 Follow

 Been programming for over 20 years and loving it!

 	

 Location

 France

	

 Work

 Full stack Lead Developer

	

 Joined

 Jun 24, 2022

 •

 Dec 13 '23

 	Copy link
	
	

 Hide

	
	
	

 Hi.

I remember coming across WeasyPrint when looking for an alternative to wkhtmltopdf but had to ditch it because of the lack of JavaScript support.

wkhtmltopdf is a bit of a hassle to setup/debug but once your eyes have bled enough then it's a viable solution. :)

I might give Puppeteer a go at some point.

 3 likes

 Like

 Reply

 Code of Conduct
 •
 Report abuse

 Are you sure you want to hide this comment? It will become hidden in your post, but will still be visible via the comment's permalink.

 Hide child comments as well

 Confirm

 For further actions, you may consider blocking this person and/or reporting abuse

 Read next

 What is the Difference between Spread and Rest Operator in JavaScript

 Himanshu Gupta - Feb 28

 Creating a Simple CRUD Application with Vue.js

 chintanonweb - Feb 15

 API Testing with Cypress - Part I

 Alicia Marianne - Mar 3

 AutoLink: Simplifying Conditional Navigation in React Router Projects

 Andreas Riedmüller - Feb 19

 Theodo

 Follow

 More from Theodo

 How to beautify java code reliably

 #java
 #productivity
 #tutorial
 #webdev

 Whisper to your keyboard: Setting up a speech-to-text button

 #ai
 #programming
 #beginners
 #tutorial

 Effective nodejs version management for the busy developer

 #webdev
 #javascript
 #beginners
 #tutorial

 DEV Community — A constructive and inclusive social network for software developers. With you every step of your journey.

 	

 Home

	

 Podcasts

	

 Videos

	

 Tags

	

 DEV Help

	

 Forem Shop

	

 Advertise on DEV

	

 DEV Showcase

	

 About

	

 Contact

	

 Guides

	

 Software comparisons

 	

 Code of Conduct

	

 Privacy Policy

	

 Terms of use

 Built on Forem — the open source software that powers DEV and other inclusive communities.

 Made with love and Ruby on Rails. DEV Community © 2016 - 2024.

 We're a place where coders share, stay up-to-date and grow their careers.

 Log in

 Create account

