Thanks to : Understand Ollama and LangChain Chat History in 10 minutes
from langchain_community.llms import Ollama
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
llm = Ollama(model = "llama3")
chat_history = []
chat_history = [
("human","My name is John")
]
prompt_template = ChatPromptTemplate.from_messages([
("system","your name is HAL, greeet user and answer questions with simple responses"),
MessagesPlaceholder(variable_name= "chat_history"),
("human","{input}")
])
chain = prompt_template | llm
def main ():
while True:
question = input("You : ")
if question == "done":
return
response = chain.invoke({"input" : question, "chat_history": chat_history})
chat_history.append(HumanMessage(content=question))
chat_history.append(AIMessage(content=response))
print("AI : " + response)
if __name__ == "__main__":
main()
Example of discussion:
Top comments (0)