DEV Community

Jaipal001
Jaipal001

Posted on

1

Explaining donut like 5 years old Part-4 (Last)

The complete code for C is

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

typedef struct {
    double a1;
    double a2;
    double a3;
} singleRow;

typedef struct {
    singleRow a1;
    singleRow a2;
    singleRow a3;
} Matrix;

singleRow multiply(singleRow m1, Matrix m2) {
    singleRow res;
    res.a1 = m1.a1 * m2.a1.a1 + m1.a2 * m2.a2.a1 + m1.a3 * m2.a3.a1;
    res.a2 = m1.a1 * m2.a1.a2 + m1.a2 * m2.a2.a2 + m1.a3 * m2.a3.a2;
    res.a3 = m1.a1 * m2.a1.a3 + m1.a2 * m2.a2.a3 + m1.a3 * m2.a3.a3;
    return res;
}

int main() {
  int screen_width = 80, height = 22;
  char buffer[1760];
  float zBuffer[1760];
  float A = 0, B = 0;
  int R2 = 2, R1 = 1;
  printf("\x1b[2J");
  while (1) {
    memset(buffer, ' ', 1760);
    memset(zBuffer, 0, 7040);
      for (float theta = 0; theta < 6.28; theta += 0.07) {
        for (float phi = 0; phi < 6.28; phi += 0.02) {
          singleRow circle = {2 + cos(theta), sin(theta), 0};
          // rotation on Y-axis
          Matrix Ry = {{cos(phi), 0, sin(phi)}, {0, 1, 0}, {-sin(phi), 0, cos(phi)}};
          // rotation on X-axis
          Matrix Rx = {{1, 0, 0}, {0, cos(A), sin(A)}, {0, -sin(A), cos(A)}};
          // rotation on Z-axis
          Matrix Rz = {{cos(B), sin(B), 0}, {-sin(B), cos(B), 0}, {0, 0, 1}};

          singleRow donut = multiply(circle, Ry);
          singleRow rotateX = multiply(donut, Rx);
          // We will consider it as [Nx, Ny, Nz]
          singleRow spinningDonut = multiply(rotateX, Rz);
          float reciNz = 1 / (spinningDonut.a3 + 5);

          int x = 40 + 30 * spinningDonut.a1 * reciNz;
          int y = 12 + 15 * spinningDonut.a2 * reciNz;

          // o is index of current buffer
          int o = x + screen_width * y;

          int L = 8 * (spinningDonut.a2 - spinningDonut.a3 + 2 * cos(B) * sin(A) * sin(phi)
            - 2 * cos(phi) * cos(theta) * sin(B)
            - 2 * cos(phi) * sin(B)
            + 2 * cos(A) * sin(phi)
          );

          // donut luminicity will be seen by these characters
          // these 12
          char charOut[] = ".,-~:;=!*#$@";

          if (x < screen_width && y < height && zBuffer[o] < reciNz) {
            zBuffer[o] = reciNz;
            // If L < 0, . will be buffer
            buffer[o] = charOut[L > 0 ? L : 0];
          }
        }
      }
    // Clear screen
    printf("\x1b[H");
    for (int i = 0; i <1761; i++) {
      // On every 80th character, new line will be printed
      // If there's a reminder then buffer printed
      putchar(i % 80 ? buffer[i] : 10);
      A += 0.00004;
      B += 0.00002;
    }
    // Timer to slow down speed a bit
    usleep(10000);
  }
  return 0;
}
Enter fullscreen mode Exit fullscreen mode

The complete code for Java is

import java.util.Arrays;

class singleRow {
  public double a1;
  public double a2;
  public double a3;
  public singleRow(double a1, double a2, double a3) {
    this.a1 = a1;
    this.a2 = a2;
    this.a3 = a3;
  }
}
class Matrix {
  public singleRow a1;
  public singleRow a2;
  public singleRow a3;
  public Matrix(singleRow a1, singleRow a2, singleRow a3) {
    this.a1 = new singleRow(a1.a1, a1.a2, a1.a3);
    this.a2 = new singleRow(a2.a1, a2.a2, a2.a3);
    this.a3 = new singleRow(a3.a1, a3.a2, a3.a3);
  }
  public static singleRow multiply(singleRow m1, Matrix m2) {
    singleRow res = new singleRow(0, 0, 0);
    res.a1 = (m1.a1 * m2.a1.a1) + (m1.a2 * m2.a2.a1) + (m1.a3 * m2.a3.a1);
    res.a2 = (m1.a1 * m2.a1.a2) + (m1.a2 * m2.a2.a2) + (m1.a3 * m2.a3.a2);
    res.a3 = (m1.a1 * m2.a1.a3) + (m1.a2 * m2.a2.a3) + (m1.a3 * m2.a3.a3);
    return res;
  }
}


public class Main {
public static void main() {
  int screen_width = 80, height = 22;
  char[] buffer = new char[1760];
  double[] zBuffer = new double[1760];
  double A = 0, B = 0;
  int R2 = 2, R1 = 1;
  System.out.print("\u001b[2J");
  while (true) {
    Arrays.fill(buffer, 0, 1760, ' ');
    Arrays.fill(zBuffer, 0, 1760, 0);
      for (float theta = 0; theta < 6.28; theta += 0.07) {
        for (float phi = 0; phi < 6.28; phi += 0.02) {
          singleRow circle = {2 + Math.cos(theta), Math.sin(theta), 0};
          // rotation on Y-axis
          Matrix Ry = new Matrix(
          new singleRow(Math.cos(phi), 0, Math.sin(phi)),
          new singleRow(0, 1, 0),
          new singleRow(-Math.sin(phi), 0, Math.cos(phi))
        );
        // rotation on X-axis
        Matrix Rx = new Matrix(
          new singleRow(1, 0, 0),
          new singleRow(0, Math.cos(A), Math.sin(A)),
          new singleRow(0, -Math.sin(A), Math.cos(A))
        );
        // rotation on Z-axis
        Matrix Rz = new Matrix(
          new singleRow(Math.cos(B), Math.sin(B), 0),
          new singleRow(-Math.sin(B), Math.cos(B), 0),
          new singleRow(0, 0, 1)
        );

          singleRow donut = Matrix.multiply(circle, Ry);
          singleRow rotateX = Matrix.multiply(donut, Rx);
          // We will consider it as [Nx, Ny, Nz]
          singleRow spinningDonut = Matrix.multiply(rotateX, Rz);
          float reciNz = 1 / (spinningDonut.a3 + 5);

          int x = 40 + 30 * spinningDonut.a1 * reciNz;
          int y = 12 + 15 * spinningDonut.a2 * reciNz;

          // o is index of current buffer
          int o = x + screen_width * y;

          int L = 8 * (spinningDonut.a2 - spinningDonut.a3 
            + 2 * Math.cos(B) * Math.sin(A) * Math.sin(phi)
            - 2 * Math.cos(phi) * Math.cos(theta) * Math.sin(B)
            - 2 * Math.cos(phi) * Math.sin(B)
            + 2 * Math.cos(A) * Math.sin(phi)
          );

          // donut luminicity will be seen by these characters
          // these 12
          char[] charOpts = {'.', ',', '-', '~', ':', ';', '=', '!', '*', '#', '$', '@'};

          if (x < screen_width && y < height && zBuffer[o] < reciNz) {
            zBuffer[o] = reciNz;
            // If L < 0, . will be buffer
            buffer[o] = charOut[L > 0 ? L : 0];
          }
        }
      }
    // Clear screen
    System.out.print("\u001b[H");
    for (int i = 0; i <1761; i++) {
      // On every 80th character, new line will be printed
      // If there's a reminder then buffer printed
      System.out.print(i % 80 ? buffer[i] : 10);
      A += 0.00004;
      B += 0.00002;
    }
  }
}
}
Enter fullscreen mode Exit fullscreen mode

Image of Timescale

🚀 pgai Vectorizer: SQLAlchemy and LiteLLM Make Vector Search Simple

We built pgai Vectorizer to simplify embedding management for AI applications—without needing a separate database or complex infrastructure. Since launch, developers have created over 3,000 vectorizers on Timescale Cloud, with many more self-hosted.

Read more

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

đź‘‹ Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay