The distributions of NOx and NOy were dominated by local emission and photochemical production during daylight but also influenced by air masses transported from south direction during nighttime. Significant positive correlation (R2 = 0.9, p 500 pptv) implied a steady state between PAN and PPN achieving rapidly in the polluted air masses. Negative correlation and slopes between PAN and O3 likely resulted from their weak photochemical productions in the winter, coupled with the large NO sources which acted as a local sink for O3, but much less so for PAN due to its enhanced thermal stability under low temperature. Fe3O4 nanoparticles (NPs), as representative magnetic materials, have been widely used in the industrial and biomedical sectors, and their environmental impacts must be evaluated for their sustainable use. In this study, the interactions between Fe3O4 NPs and maize plants were investigated by a combination of phenotypic and metabolic approaches. Maize plants (Zea mays) were grown in soil treated with Fe3O4 NPs at 0, 50 and 500 mg/kg for 4 weeks. Fe3O4 NPs had no impact on plant biomass or photosynthesis. However, root length of maize plant significantly increased, with decreased malondialdehyde (MDA) level, indicating the positive effects on root development and membrane integrity. Inductively coupled plasma optical emission spectrometry (ICP-OES) revealed that Fe3O4 NPs resulted in a significant Fe accumulation in roots, instead of leaves. In addition, 500 mg/kg Fe3O4 NPs significantly promoted dehydrogenase enzyme activity by 84.9%. Metabolomics revealed that maize root metabolomes were re-programmed by Fe3O4 NPs exposure. Metabolic pathways associated with antioxidant and defence were inactivated by Fe3O4 NPs, indicating the protective role of Fe3O4 NPs for microbes and plant roots. Taken together, the results indicate a limited impact of environmental Fe3O4 NPs on plant growth. Taken together, the results of this study offer new insights into the molecular mechanisms by which maize responds to Fe3O4 NP exposure. V.The plastic waste disposal strongly raised in importance in the recent past and it is approaching a critical situation worldwide, so requiring putting in practice the criteria of circular economy by avoiding meaningless policy responses against the plastic materials. The world of plastic materials includes a wide range of goods in all the sectors of our life packaging, construction, biomedicals, etc. The answer to the plastic waste disposal is build an industrial network characterized by reliability, flexibility, sustainability, utility in the industrial cycle and ability to provide useful products to the market. The traditional processes including recycling and energy recovery fulfil only a part of these conditions and need to be assessed in correlation to their real effect on the circular economy such as the uses of the obtained products in the anthroposphere's life cycle, the burdens generated by the processes itself, etc. Among the possible processes that can be more sustainable if compared with the traditional ones, in a real circular economy perspective, those based on thermochemical exploitation of products obtained by plastics are discussed and assessed. The results show that it is possible to transform an expensive and non-resolving plastic waste management system in an industrial network having an intrinsic economic sustainability and, overall, a well-defined role in the economic chain of plastics. The results show that an integration between the present system with the production of petrochemical products, including oil/gasoline/syngas/…, strongly improve the economic performance of the overall waste system, allowing a larger savings of not-renewable resources, a limited greenhouse burden, a release in the market of valuable products instead of poor quality materials and the minimization of waste destined to be landfilled. RXDX106 Sulfidation can enhance the reactivity and longevity of nanoscale zero-valent iron (nZVI), but little is known about its effect on the fate and transport of nZVI in saturated porous media. This work compared the stability and mobility of carboxymethyl cellulose (CMC) stabilized nZVI (CMC-nZVI) and sulfidated nZVI (CMC-S-nZVI) particles in saturated porous media. After sulfidation, the hydrodynamic size of CMC-S-nZVI was 100-150 nm larger than CMC-nZVI due to enhanced adsorption of CMC onto the S-nZVI surface, which was facilitated by the bidentate bridging interaction between CMC and the FeSx phase on S-nZVI. Of note is that they had a similar core size and zeta potential. In comparison to CMC-nZVI, CMC-S-nZVI exhibited less physical settling (0-5% vs. 5-73%) and chemical dissolution (2-10% vs. 3-27%) within 55 min under the same ionic conditions (Na+, K+ less then 200 mM; Al3+ less then 0.75 mM). Column breakthrough experiments showed that both CMC-S-nZVI and CMC-nZVI had relatively high mobility in saturated porous media. However, CMC-S-nZVI exhibited greater breakthrough (C/C0 = 0.57-1.0) and corresponding greater mass recovery rates than the corresponding CMC-nZVI (C/C0 = 0.44-1.0) under most of the experimental conditions (e.g., different ion type and concentration, flow rate, and input concentration). The fitted colloid filtration theory model was in good agreement with experiments. This work suggests that in addition to the significant reactivity and longevity improvements demonstrated in other studies, CMC-S-nZVI is also more mobile than CMC-nZVI suggesting that CMC-S-nZVI has many of the characteristics favorable for field application. Science is the seed of a decent life, with which we sow hope in the present and which we irrigate with the perfecting of good deeds. It is even crucial in the Mediterranean southern frontiers where the cultural erosion dissolves the structure of a society abandoned by the arms and brains of its youth. Soil-water-vegetation crisis should not be underestimated; coupled with socioeconomic congestion it would lead to an irremediable crash. Here, we show that the first and most difficult step to face soil degradation is to cultivate the right idea and develop it into a well-established community culture. We found in northern Morocco that 94.5% of farmers have no qualification and 82.6% of them act in a way that worsens soil degradation even if they are aware of the severity of the problem. This confused perception of ideas originates inappropriate labour behaviours non-aligned with public actions. Our results show that the impact of this is a high potential regional erosion rate of 27.7 t/ha/year which is equivalent to a massive potential gross amount of soil loss of 44.RXDX106
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)