DEV Community

Hall Richter
Hall Richter

Posted on

The part regarding hypoxia-inducible factor 1-alpha in inflammatory intestinal ailment.

The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCβ-deficient (PKCβHep-/-) mouse model, we demonstrated the role of hepatic PKCβ in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCβHep-/- mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/β signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCβHep-/- liver compared with controls. The above data strongly imply that hepatic PKCβ deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCβ has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Selleckchem Ro 61-8048 Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.Common variable immunodeficiency (CVID) is characterized by profound primary antibody defects and frequent infections, yet autoimmune/inflammatory complications of unclear origin occur in 50% of individuals and lead to increased mortality. Here, we show that circulating bacterial 16S rDNA belonging to gut commensals was significantly increased in CVID serum (P less then 0.0001), especially in patients with inflammatory manifestations (P = 0.0007). link2 Levels of serum bacterial DNA were associated with parameters of systemic immune activation, increased serum IFN-γ, and the lowest numbers of isotype-switched memory B cells. Bacterial DNA was bioactive in vitro and induced robust host IFN-γ responses, especially among patients with CVID with inflammatory manifestations. Patients with X-linked agammaglobulinemia (Bruton tyrosine kinase [BTK] deficiency) also had increased circulating bacterial 16S rDNA but did not exhibit prominent immune activation, suggesting that BTK may be a host modifier, dampening immune responses to microbial translocation. These data reveal a mechanism for chronic immune activation in CVID and potential therapeutic strategies to modify the clinical outcomes of this disease.Tregs play vital roles in suppressing atherogenesis. Pathological conditions reshape Tregs and increase Treg-weakening plasticity. It remains unclear how Tregs preserve their function and how Tregs switch into alternative phenotypes in the environment of atherosclerosis. In this study, we observed a great induction of CD4+Foxp3+ Tregs in the spleen and aorta of ApoE-/- mice, accompanied by a significant increase of plasma IL-35 levels. To determine if IL-35 devotes its role in the rise of Tregs, we generated IL-35 subunit P35-deficient (IL-35P35-deficient) mice on an ApoE-/- background and found Treg reduction in the spleen and aorta compared with ApoE-/- controls. In addition, our RNA sequencing data show the elevation of a set of chemokine receptor transcripts in the ApoE-/- Tregs, and we have validated higher CCR5 expression in ApoE-/- Tregs in the presence of IL-35 than in the absence of IL-35. Furthermore, we observed that CCR5+ Tregs in ApoE-/- have lower Treg-weakening AKT-mTOR signaling, higher expression of inhibitory checkpoint receptors TIGIT and PD-1, and higher expression of IL-10 compared with WT CCR5+ Tregs. In conclusion, IL-35 counteracts hyperlipidemia in maintaining Treg-suppressive function by increasing 3 CCR5-amplified mechanisms, including Treg migration, inhibition of Treg weakening AKT-mTOR signaling, and promotion of TIGIT and PD-1 signaling.Vascular procedures, such as stenting, angioplasty, and bypass grafting, often fail due to intimal hyperplasia (IH), wherein contractile vascular smooth muscle cells (VSMCs) dedifferentiate to synthetic VSMCs, which are highly proliferative, migratory, and fibrotic. Previous studies suggest MAPK-activated protein kinase 2 (MK2) inhibition may limit VSMC proliferation and IH, although the molecular mechanism underlying the observation remains unclear. We demonstrated here that MK2 inhibition blocked the molecular program of contractile to synthetic dedifferentiation and mitigated IH development. Molecular markers of the VSMC contractile phenotype were sustained over time in culture in rat primary VSMCs treated with potent, long-lasting MK2 inhibitory peptide nanopolyplexes (MK2i-NPs), a result supported in human saphenous vein specimens cultured ex vivo. RNA-Seq of MK2i-NP-treated primary human VSMCs revealed programmatic switching toward a contractile VSMC gene expression profile, increasing expression of antiinflammatory and contractile-associated genes while lowering expression of proinflammatory, promigratory, and synthetic phenotype-associated genes. Finally, these results were confirmed using an in vivo rabbit vein graft model where brief, intraoperative treatment with MK2i-NPs decreased IH and synthetic phenotype markers while preserving contractile proteins. link3 These results support further development of MK2i-NPs as a therapy for blocking VSMC phenotype switch and IH associated with cardiovascular procedures.Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation - but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3- macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation-induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.Current treatments for Parkinson's disease (PD) provide only symptomatic relief, with no disease-modifying therapies identified to date. Repurposing FDA-approved drugs to treat PD could significantly shorten the time needed for and reduce the costs of drug development compared with conventional approaches. We developed an efficient strategy to screen for modulators of β-glucocerebrosidase (GCase), a lysosomal enzyme that exhibits decreased activity in patients with PD, leading to accumulation of the substrate glucosylceramide and oxidized dopamine and α-synuclein, which contribute to PD pathogenesis. Using a GCase fluorescent probe and affinity-based fluorescence polarization assay, we screened 1280 structurally diverse, bioactive, and cell-permeable FDA-approved drugs and found that the antipsychotic quetiapine bound GCase with high affinity. Moreover, quetiapine treatment of induced pluripotent stem cell-derived (iPSC-derived) dopaminergic neurons from patients carrying mutations in GBA1 or LRRK2 led to increased wild-type GCase protein levels and activity and partially lowered accumulation of oxidized dopamine, glucosylceramide, and α-synuclein. Similarly, quetiapine led to activation of wild-type GCase and reduction of α-synuclein in a GBA mutant mouse model (Gba1D409V/+ mice). Together, these results suggest that repurposing quetiapine as a modulator of GCase may be beneficial for patients with PD exhibiting decreased GCase activity.The role and mechanisms for upregulating complement factor B (CFB) expression in podocyte dysfunction in diabetic kidney disease (DKD) are not fully understood. Here, analyzing Gene Expression Omnibus GSE30528 data, we identified genes enriched in mTORC1 signaling, CFB, and complement alternative pathways in podocytes from patients with DKD. In mouse models, podocyte mTOR complex 1 (mTORC1) signaling activation was induced, while blockade of mTORC1 signaling reduced CFB upregulation, alternative complement pathway activation, and podocyte injury in the glomeruli. Knocking down CFB remarkably alleviated alternative complement pathway activation and DKD in diabetic mice. In cultured podocytes, high glucose treatment activated mTORC1 signaling, stimulated STAT1 phosphorylation, and upregulated CFB expression, while blockade of mTORC1 or STAT1 signaling abolished high glucose-upregulated CFB expression. Additionally, high glucose levels downregulated protein phosphatase 2Acα (PP2Acα) expression, while PP2Acα deficiency enhanced high glucose-induced mTORC1/STAT1 activation, CFB induction, and podocyte injury. Taken together, these findings uncover a mechanism by which CFB mediates podocyte injury in DKD.Selleckchem Ro 61-8048

Top comments (0)