DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

Create and access a tensor in PyTorch

Buy Me a Coffee

*Memos:

tensor() can create the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • tensor() can be used with torch but not with a tensor.
  • The 1st argument with torch is data(Required-Type:int, float, complex or bool or tuple of int, float, complex or bool or list of int, float, complex or bool). *The default type is float32.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch (Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch (Optional-Default:False-Type:bool): *Memos:
  • The one or more floating-point numbers or complex numbers of a tensor are rounded to 4 decimal places by default.
import torch

""" 0D tensor """

my_tensor = torch.tensor(data=-3)

my_tensor
# tensor(-3)

""" 1D tensor """

torch.tensor(data=[3, 7, -5])
# tensor([3, 7, -5])

torch.tensor(data=[3.635251, 7.270649, -5.164872])
# tensor([3.6353, 7.2706, -5.1649])

torch.tensor(data=[3.635251+4.634852, 7.27+2.586449j, -5.164872-3.45])
# tensor([0.9996+0.0000j, 7.2700+2.5864j, -8.6149+0.0000j])

torch.tensor(data=[True, False, True])
# tensor([True, False, True])

""" 2D tensor """

torch.tensor(data=[[3, 7, -5], [-9, 6, 2]])
# tensor([[3, 7, -5], [-9, 6, 2]])

""" 3D tensor """

torch.tensor(data=[[[3, 7, -5], [-9, 6, 2]],
                   [[8, 0, -1], [4, 9, -6]]])
# tensor([[[3, 7, -5], [-9, 6, 2]],
#         [[8, 0, -1], [4, 9, -6]]])
Enter fullscreen mode Exit fullscreen mode

In addition, Tensor() can create the 1D or more D tensor of zero or more floating-point numbers as shown below:

*Memos:

  • Tensor() can be used with torch but not with a tensor.
  • The 1st argument with torch is data(Required-Type:tuple of int, float or bool or list of int, float or bool).
  • The one or more floating-point numbers or complex numbers of a tensor are rounded to 4 decimal places by default.
import torch

torch.Tensor(data=[3., 7., -5.]) # 1D tensor
# tensor([3., 7., -5.])

torch.Tensor(data=[[3., 7., -5.], [-9., 6., 2.]]) # 2D tensor
# tensor([[-3., 7., -5.], [-9., 6., 2.]])

torch.Tensor(data=[[[-3., 7., -5.], [-9., 6., 2.]], # 3D tensor
                   [[8., 0., -1.], [4., 9., -6.]]])
# tensor([[[-3., 7., -5.], [-9., 6., 2.]],
#         [[8., 0., 1.], [4., 9., -6.]]])

torch.Tensor(data=[[[-3., 7., -5.], [-9., 6., 2.]], # 3D tensor
                   [[8., 0., -1], [4., 9., -6.]]])
# tensor([[[-3., 7., -5.], [-9., 6., 2.]],
#         [[8., 0., -1.], [4., 9., -6.]]])

torch.Tensor(data=[[[-3, 7, -5], [-9, 6, 2]], # 3D tensor
                   [[8, 0, -1], [4, 9, -6]]])
# tensor([[[-3., 7., -5.], [-9., 6., 2.]],
#         [[8., 0., -1.], [4., 9., -6.]]])

torch.Tensor(data=[[[True, False, True], [True, False, True]], # 3D tensor
                   [[False, True, False], [False, True, False]]])
# tensor([[[1., 0., 1.], [1., 0., 1.]],
#         [[0., 1., 0.], [0., 1., 0.]]])
Enter fullscreen mode Exit fullscreen mode

You can access a 0D or more D tensor with these ways as shown below. *I give much more ways to access a 1D tensor than a 0D, 2D and 3D tensor:

import torch

my_tensor = torch.tensor(3) # 0D tensor

my_tensor
# tensor(3)

my_tensor = torch.tensor([3]) # 1D tensor

my_tensor
# tensor([3])

my_tensor = torch.tensor([3, 7, -5, -9, 6, 2, 8, 0, -1, 4, 9, -6])
                         # 1D tensor
my_tensor[4]
my_tensor[4,]
my_tensor[-10]
my_tensor[-10,]
my_tensor[4:5]
my_tensor[4:5,]
my_tensor[-8:5]
my_tensor[-8:5,]
my_tensor[4:-7]
my_tensor[4:-7,]
my_tensor[-8:-7]
my_tensor[-8:-7,]
# tensor(6)

my_tensor[4:8]
my_tensor[4:8,]
my_tensor[-8:8]
my_tensor[-8:8,]
my_tensor[4:-4]
my_tensor[4:-4,]
my_tensor[-8:-4]
my_tensor[-8:-4,]
# tensor([6, 2, 8, 0])

my_tensor[:7]
my_tensor[:7,]
my_tensor[:-5]
my_tensor[:-5,]
my_tensor[0:7]
my_tensor[0:7,]
my_tensor[-12:7]
my_tensor[-12:7,]
my_tensor[0:-5]
my_tensor[0:-5,]
my_tensor[-12:-5]
my_tensor[-12:-5,]
# tensor([3, 7, -5, -9, 6, 2, 8])

my_tensor[5:]
my_tensor[5:,]
my_tensor[-7:]
my_tensor[-7:,]
my_tensor[5:12]
my_tensor[5:12,]
my_tensor[-7:12]
my_tensor[-7:12,]
# tensor([2, 8, 0, -1, 4, 9, -6])

my_tensor[:]
my_tensor[:,]
my_tensor[0:12]
my_tensor[0:12,]
# tensor([3, 7, -5, -9, 6, 2, 8, 0, -1, 4, 9, -6])

my_tensor = torch.tensor([[3, 7, -5, -9, 6, 2],
                          [8, 0, -1, 4, 9, -6]])
my_tensor[1]             # 2D tensor
my_tensor[:][1]
my_tensor[1, :]
# tensor([8, 0, -1, 4, 9, -6])

my_tensor[1][3]
my_tensor[1, 3]
# tensor(4)

my_tensor[1][:4]
my_tensor[1, :4]
# tensor([8, 0, -1,  4])

my_tensor[1][2:]
my_tensor[1, 2:]
# tensor([-1, 4, 9, -6])

my_tensor[:, 3]
# tensor([-9, 4])

my_tensor[:]
# tensor([[3, 7, -5, -9, 6, 2],
#         [8, 0, -1, 4, 9, -6]])

my_tensor = torch.tensor([[[-3, 7, -5], [-9, 6, 2]],
                          [[8, 0, -1], [4, 9, -6]]])
my_tensor[1]             # 3D tensor
my_tensor[:][1]
my_tensor[1, :]
my_tensor[1][:2]
my_tensor[1, :2]
my_tensor[1][0:]
my_tensor[1, 0:]
# tensor([[8, 0, -1], [4, 9, -6]])

my_tensor[1][0]
# tensor([8, 0, -1])

my_tensor[1][0][2]
my_tensor[1, 0, 2]
# tensor(-1)

my_tensor[1][0][:2]
my_tensor[1, 0, :2]
# tensor([8, 0])

my_tensor[1][0][1:]
my_tensor[1, 0, 1:]
# tensor([0, -1])

my_tensor[:, :, 1]
# tensor([[7, 6], [0, 9]])

my_tensor[:]
# tensor([[[-3, 7, -5], [-9, 6, 2]],
#         [[8, 0, -1], [4, 9, -6]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Amplify your impact where it matters most — building exceptional apps.

Leave the infrastructure headaches to us, while you focus on pushing boundaries, realizing your vision, and making a lasting impression on your users.

Get Started

Top comments (0)

AWS Security LIVE! Stream

Go beyond the firewall

Watch AWS Security LIVE! to uncover how today’s cybersecurity teams secure what matters most.

Learn More