*Memos:
- My post explains arange().
- My post explains linspace().
logspace() can create the 1D tensor of the zero or more integers, floating-point numbers or complex numbers evenly spaced between basestart and baseend(basestart<=x<=baseend) as shown below:
*Memos:
-
logspace()can be used with torch but not with a tensor. - The 1st argument with
torchisstart(Required-Type:int,float,complexorbool). *The 0D tensor ofint,float,complexorboolalso works. - The 2nd argument with
torchisend(Required-Type:int,float,complexorbool). *The 0D tensor ofint,float,complexorboolalso works. - The 3rd argument with
torchissteps(Required-Type:int): *Memos:- It must be greater than or equal to 0.
- The 0D tensor of
intalso works.
- The 4th argument with
torchisbase(Optional-Default:10.0-Type:int,floatorbool). *The 0D tensor ofint,float,complexorboolalso works. - There is
dtypeargument withtorch(Optional-Default:None-Type:dtype): *Memos:- If it's
None, it's inferred fromstart,endorstep, then for floating-point numbers,dtypeof get_default_dtype() is used. *My post explainsget_default_dtype()and set_default_dtype(). - Setting
startandendof integer type is not enough to create the 1D tensor of integer type so integer type withdtypemust be set. -
dtype=must be used. -
My post explains
dtypeargument.
- If it's
- There is
deviceargument withtorch(Optional-Default:None-Type:str,intor device()): *Memos:- If it's
None, get_default_device() is used. *My post explainsget_default_device()and set_default_device(). -
device=must be used. -
My post explains
deviceargument.
- If it's
- There is
requires_gradargument withtorch(Optional-Default:False-Type:bool): *Memos:-
requires_grad=must be used. -
My post explains
requires_gradargument.
-
- There is
outargument withtorch(Optional-Default:None-Type:tensor): *Memos:-
out=must be used. -
My post explains
outargument.
-
import torch
torch.logspace(start=10., end=20., steps=0)
torch.logspace(start=10., end=20., steps=0, base=10.)
torch.logspace(start=20., end=10., steps=0)
torch.logspace(start=20., end=10., steps=0, base=10.)
# tensor([])
torch.logspace(start=10., end=20., steps=1)
torch.logspace(start=10., end=20., steps=1, base=10.)
# tensor([1.0000e+10])
torch.logspace(start=20., end=10., steps=1)
torch.logspace(start=20., end=10., steps=1, base=10.)
# tensor([1.0000e+20])
torch.logspace(start=10., end=20., steps=2)
torch.logspace(start=10., end=20., steps=2, base=10.)
# tensor([1.0000e+10, 1.0000e+20])
torch.logspace(start=20., end=10., steps=2)
torch.logspace(start=20., end=10., steps=2, base=10.)
# tensor([1.0000e+20, 1.0000e+10])
torch.logspace(start=10., end=20., steps=3)
torch.logspace(start=10., end=20., steps=3, base=10.)
# tensor([1.0000e+10, 1.0000e+15, 1.0000e+20])
torch.logspace(start=20., end=10., steps=3)
torch.logspace(start=20., end=10., steps=3, base=10.)
# tensor([1.0000e+20, 1.0000e+15, 1.0000e+10])
torch.logspace(start=10., end=20., steps=4)
torch.logspace(start=10., end=20., steps=4, base=10.)
# tensor([1.0000e+10, 2.1544e+13, 4.6416e+16, 1.0000e+20])
torch.logspace(start=20., end=10., steps=4)
torch.logspace(start=20., end=10., steps=4, base=10.)
# tensor([1.0000e+20, 4.6416e+16, 2.1544e+13, 1.0000e+10])
torch.logspace(start=10., end=20., steps=4, base=100.)
# tensor([1.0000e+20, 4.6416e+26, 2.1544e+33, inf])
torch.logspace(start=20., end=10., steps=4, base=100.)
# tensor([inf, 2.1544e+33, 4.6416e+26, 1.0000e+20])
torch.logspace(start=10, end=20, steps=4, base=10, dtype=torch.int64)
torch.logspace(start=torch.tensor(10),
end=torch.tensor(20),
steps=torch.tensor(4),
base=torch.tensor(10),
dtype=torch.int64)
# tensor([10000000000,
# 21544346900318,
# 46415888336127912,
# -9223372036854775808])
torch.logspace(start=10.+6.j, end=20.+3.j, steps=4)
torch.logspace(start=torch.tensor(10.+6.j),
end=torch.tensor(20.+3.j),
steps=torch.tensor(4),
base=torch.tensor(10.+0.j))
# tensor([3.1614e+09+9.4871e+09j,
# 1.0655e+13-1.8725e+13j,
# -4.5353e+16+9.8772e+15j,
# 8.1122e+19+5.8475e+19j])
torch.logspace(start=False, end=True, steps=4, base=False)
torch.logspace(start=torch.tensor(False),
end=torch.tensor(True),
steps=torch.tensor(4),
base=torch.tensor(False))
# tensor([1., 0., 0., 0.])
Top comments (0)