*Memos:
- My post explains arange().
- My post explains logspace().
linspace() can create the 1D tensor of the zero or more integers, floating-point numbers or complex numbers evenly spaced between start and end(start<=x<=end) as shown below:
*Memos:
-
linspace()can be used with torch but not with a tensor. - The 1st argument with
torchisstart(Required-Type:int,float,complexorbool). *The 0D tensor ofint,float,complexorboolalso works. - The 2nd argument with
torchisend(Required-Type:int,float,complexorbool). *The 0D tensor ofint,float,complexorboolalso works. - The 3rd argument with
torchissteps(Required-Type:int): *Memos:- It must be greater than or equal to 0.
- The 0D tensor of
intalso works.
- There is
dtypeargument withtorch(Optional-Default:None-Type:dtype): *Memos:- If it's
None, it's inferred fromstart,endorstep, then for floating-point numbers, get_default_dtype() is used. *My post explainsget_default_dtype()and set_default_dtype(). - Setting
startandendof integer type is not enough to create the 1D tensor of integer type so integer type withdtypemust be set. -
dtype=must be used. -
My post explains
dtypeargument.
- If it's
- There is
deviceargument withtorch(Optional-Default:None-Type:str,intor device()): *Memos:- If it's
None, get_default_device() is used. *My post explainsget_default_device()and set_default_device(). -
device=must be used. -
My post explains
deviceargument.
- If it's
- There is
requires_gradargument withtorch(Optional-Default:False-Type:bool): *Memos:-
requires_grad=must be used. -
My post explains
requires_gradargument.
-
- There is
outargument withtorch(Optional-Default:None-Type:tensor): *Memos:-
out=must be used. -
My post explains
outargument.
-
import torch
torch.linspace(start=10, end=20, steps=0)
torch.linspace(start=20, end=10, steps=0)
# tensor([])
torch.linspace(start=10., end=20., steps=1)
tensor([10.])
torch.linspace(start=20, end=10, steps=1)
# tensor([20.])
torch.linspace(start=10., end=20., steps=2)
# tensor([10., 20.])
torch.linspace(start=20, end=10, steps=2)
# tensor([20., 10.])
torch.linspace(start=10., end=20., steps=3)
# tensor([10., 15., 20.])
torch.linspace(start=20, end=10, steps=3)
# tensor([20., 15., 10.])
torch.linspace(start=10., end=20., steps=4)
# tensor([10.0000, 13.3333, 16.6667, 20.0000])
torch.linspace(start=20., end=10., steps=4)
# tensor([20.0000, 16.6667, 13.3333, 10.0000])
torch.linspace(start=10, end=20, steps=4, dtype=torch.int64)
torch.linspace(start=torch.tensor(10),
end=torch.tensor(20),
steps=torch.tensor(4),
dtype=torch.int64)
# tensor([10.0000, 13.3333, 16.6667, 20.0000])
torch.linspace(start=10.+6.j, end=20.+3.j, steps=4)
torch.linspace(start=torch.tensor(10.+6.j),
end=torch.tensor(20.+3.j),
steps=torch.tensor(4))
# tensor([10.0000+6.j, 13.3333+5.j, 16.6667+4.j, 20.0000+3.j])
torch.linspace(start=False, end=True, steps=4)
torch.linspace(start=torch.tensor(True),
end=torch.tensor(False),
steps=torch.tensor(4))
# tensor([0.0000, 0.3333, 0.6667, 1.0000])
torch.linspace(start=10, end=20, steps=4, dtype=torch.int64)
torch.linspace(start=torch.tensor(10),
end=torch.tensor(20),
steps=torch.tensor(4), dtype=torch.int64)
# tensor([10.0000, 13.3333, 16.6667, 20.0000])
Top comments (0)