DEV Community

Cover image for Four Types of Bar Charts in Python - Based on Tabular Data
Luca Liu
Luca Liu

Posted on • Edited on

Four Types of Bar Charts in Python - Based on Tabular Data

Simple Bar Charts in Python Based on Tabular Data

import matplotlib.pyplot as plt
import pandas as pd

df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
                   'y': [50, 30, 70, 80, 60]})

plt.bar(df['x'], df['y'], align='center', width=0.5, color='b', label='data')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Bar chart')
plt.legend()
plt.show()
Enter fullscreen mode Exit fullscreen mode

Image description

Stacked bar chart in Python Based on Tabular Data

import matplotlib.pyplot as plt
import pandas as pd

df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
                   'y1': [50, 30, 70, 80, 60],
                   'y2': [20, 40, 10, 50, 30]})

plt.bar(df['x'], df['y1'], align='center', width=0.5, color='b', label='Series 1')
plt.bar(df['x'], df['y2'], bottom=df['y1'], align='center', width=0.5, color='g', label='Series 2')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Stacked Bar Chart')
plt.legend()
plt.show()
Enter fullscreen mode Exit fullscreen mode

Image description

Grouped bar chart based on Tabular Data in Python

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

# Prepare the data
df = pd.DataFrame({
    'group': ['G1', 'G2', 'G3', 'G4', 'G5'],
    'men_means': [20, 35, 30, 35, 27],
    'women_means': [25, 32, 34, 20, 25]
})
ind = np.arange(len(df))  # x-axis position
width = 0.35  # width of each bar

# Plot the bar chart
fig, ax = plt.subplots()
rects1 = ax.bar(ind, df['men_means'], width, color='r')
rects2 = ax.bar(ind + width, df['women_means'], width, color='y')

# Add labels, legend, and axis labels
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(df['group'])
ax.legend((rects1[0], rects2[0]), ('Men', 'Women'))
ax.set_xlabel('Groups')
ax.set_ylabel('Scores')

# Display the plot
plt.show()

Enter fullscreen mode Exit fullscreen mode

Image description

Percent stacked bar chart based on Tabular Data in Python

import matplotlib.pyplot as plt
import pandas as pd

# Prepare the data
df = pd.DataFrame({
    'x': ['Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5'],
    'y1': [10, 20, 30, 25, 30],
    'y2': [20, 25, 30, 15, 20],
    'y3': [30, 30, 25, 20, 10]
})

# calculate percentage
y_percent = df.iloc[:, 1:].div(df.iloc[:, 1:].sum(axis=1), axis=0) * 100

# plot the chart
fig, ax = plt.subplots()
ax.bar(df['x'], y_percent.iloc[:, 0], label='Series 1', color='r')
ax.bar(df['x'], y_percent.iloc[:, 1], bottom=y_percent.iloc[:, 0], label='Series 2', color='g')
ax.bar(df['x'], y_percent.iloc[:, 2], bottom=y_percent.iloc[:, :2].sum(axis=1), label='Series 3', color='b')

# Display the plot
plt.show()
Enter fullscreen mode Exit fullscreen mode

Image description

Explore more

Thank you for taking the time to explore data-related insights with me. I appreciate your engagement.

🚀 Connect with me on LinkedIn

🎃 Connect with me on X

🌍 Connect with me on Instagram

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay