Data visualization library based on Matplotlib. Provides High Level Graphical Interface.
import seaborn as sns
import matplotlib.pyplot as plt
loading dataset,# draw lineplot,# setting the x limit of the plot# # changing the theme to dark
data = sns.load_dataset("iris")
sns.lineplot(x="sepal_length", y="sepal_width", data=data)
plt.xlim(5)
sns.set_style("dark")
plt.show()
figure() method.
data = sns.load_dataset("iris")
plt.figure(figsize = (4, 4))
sns.lineplot(x="sepal_length", y="sepal_width", data=data)
sns.despine()
plt.show()
set_context() method
Syntax:
set_context(context=None, font_scale=1, rc=None)
data = sns.load_dataset("iris")
sns.lineplot(x="sepal_length", y="sepal_width", data=data)
sns.set_context("poster")
plt.show()
*Subplot Already Discued in Matplotlib
Relational Plots-->Relational plots are used for visualizing the statistical relationship between the data points
Syntax:
seaborn.relplot(x=None, y=None, data=None, **kwargs)
data = sns.load_dataset("iris")
sns.relplot(x='sepal_width', y='species', data=data)
plt.show()
Scatter Plot
Syntax:
seaborn.scatterplot(x=None, y=None, data=None, **kwargs)
data = sns.load_dataset("iris")
sns.scatterplot(x='sepal_length', y='sepal_width', data=data)
plt.show()
Line Plot
Syntax:
seaborn.lineplot(x=None, y=None, data=None, **kwargs)
data = sns.load_dataset("iris")
sns.lineplot(x='sepal_length', y='species', data=data)
plt.show()
Bar Plot
Syntax:
barplot([x, y, hue, data, order, hue_order, …])
data = sns.load_dataset("iris")
sns.barplot(x='species', y='sepal_length', data=data)
plt.show()
Count Plot
Syntax:
countplot([x, y, hue, data, order, …])
data = sns.load_dataset("iris")
sns.countplot(x='species', data=data)
plt.show()
Box Plot
Syntax:
# boxplot([x, y, hue, data, order, hue_order, …])
data = sns.load_dataset("iris")
sns.boxplot(x='species', y='sepal_width', data=data)
plt.show()
Violinplot
Syntax:
violinplot([x, y, hue, data, order, …]
data = sns.load_dataset("iris")
sns.violinplot(x='species', y='sepal_width', data=data)
plt.show()
Stripplot
Syntax:
stripplot([x, y, hue, data, order, …])
data = sns.load_dataset("iris")
sns.stripplot(x='species', y='sepal_width', data=data)
plt.show()
Swarmplot
Syntax:
swarmplot([x, y, hue, data, order, …])
data = sns.load_dataset("iris")
sns.swarmplot(x='species', y='sepal_width', data=data)
plt.show()
Histogram
Syntax:
histplot(data=None, *, x=None, y=None, hue=None, **kwargs)
data = sns.load_dataset("iris")
sns.histplot(x='species', y='sepal_width', data=data)
plt.show()
Distplot
Syntax:
distplot(a[, bins, hist, kde, rug, fit, …])
data = sns.load_dataset("iris")
sns.distplot(data['sepal_width'])
plt.show()
Jointplot
Syntax:
jointplot(x, y[, data, kind, stat_func, …])
data = sns.load_dataset("iris")
sns.jointplot(x='species', y='sepal_width', data=data)
plt.show()
Pairplot
Syntax:
pairplot(data[, hue, hue_order, palette, …])
data = sns.load_dataset("iris")
sns.pairplot(data=data, hue='species')
plt.show()
Rugplot
Syntax:
rugplot(a[, height, axis, ax])
data = sns.load_dataset("iris")
sns.rugplot(data=data)
plt.show()
KDE Plot
Syntax:
seaborn.kdeplot(x=None, *, y=None, vertical=False, palette=None, **kwargs)
data = sns.load_dataset("iris")
sns.kdeplot(x='sepal_length', y='sepal_width', data=data)
plt.show()
Regression Plots
Syntax:
seaborn.lmplot(x, y, data, hue=None, col=None, row=None, **kwargs)
data = sns.load_dataset("tips")
sns.lmplot(x='total_bill', y='tip', data=data)
plt.show()
Regplot
Syntax:
seaborn.regplot( x, y, data=None, x_estimator=None, **kwargs)
data = sns.load_dataset("tips")
sns.regplot(x='total_bill', y='tip', data=data)
plt.show()
Heatmap
Syntax:
seaborn.heatmap(data, *, vmin=None, vmax=None, cmap=None, center=None, annot_kws=None, linewidths=0, linecolor=’white’, cbar=True, **kwargs)
data = sns.load_dataset("tips")
# correlation between the different parameters
tc = data.corr()
sns.heatmap(tc)
plt.show()
Top comments (0)