DEV Community

Fabian Anguiano
Fabian Anguiano

Posted on

2 1

Getting started with pandas (practical example) 2021

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.

What does that even mean?

Lets get practical. We will be doing the following.

  1. Get a few python list
  2. Set up the data in clean way
  3. Export the data to an excel sheet

Clean up raw data

Lets take some random data. We will make two list number and email


number = []
email = []

data = [
    {
        'numberrange': "53262",
        'email':'eu@aol.com',
    },
    {
        'numberrange': "553343",
        'email': "non.hendrerit.id@google.ca"
    },
    {
        'numberrange': "638442",
        'email': "donec.tempus.lorem@google.couk"
    },
    {
        'numberrange': "75523",
        'email': "lorem.vitae.odio@aol.org"
    },
    {
        'numberrange': "66493",
        'email': "orci.lacus@aol.edu"
    }
]

Enter fullscreen mode Exit fullscreen mode

Looping the data

Now lets loop the data and get all instances of 'numberrange' and 'email'. We will append the results to our list we made above.

for i in data:
    print(i['numberrange'])
    print(i['email'])
    number.append(i['numberrange'])
    email.append(i['email'])
Enter fullscreen mode Exit fullscreen mode

Putting it all together


import pandas as pd

number = []
email = []




data = [
    {
        'numberrange': "53262",
        'email':'eu@aol.com',
    },
    {
        'numberrange': "553343",
        'email': "non.hendrerit.id@google.ca"
    },
    {
        'numberrange': "638442",
        'email': "donec.tempus.lorem@google.couk"
    },
    {
        'numberrange': "75523",
        'email': "lorem.vitae.odio@aol.org"
    },
    {
        'numberrange': "66493",
        'email': "orci.lacus@aol.edu"
    }
]


for i in data:
    print(i['numberrange'])
    print(i['email'])
    number.append(i['numberrange'])
    email.append(i['email'])



df = pd.DataFrame()

df['Number'] = number
df['Email'] = email



# Converting to excel
df.to_excel('Make_an_excel_sheet.xlsx', index=False)

Enter fullscreen mode Exit fullscreen mode

alt text

Image of Datadog

Create and maintain end-to-end frontend tests

Learn best practices on creating frontend tests, testing on-premise apps, integrating tests into your CI/CD pipeline, and using Datadog’s testing tunnel.

Download The Guide

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more