DEV Community

umut bayindir
umut bayindir

Posted on

Genesis AGI

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random

Define a Transformer model for reasoning with multi-modal support

class AGITransformer(nn.Module):
def init(self, input_dim, hidden_dim, output_dim):
super(AGITransformer, self).init()
self.embedding = nn.Linear(input_dim, hidden_dim)
self.transformer = nn.Transformer(
d_model=hidden_dim,
nhead=4,
num_encoder_layers=4,
num_decoder_layers=4,
batch_first=True # Ensure batch-first format
)
self.output_layer = nn.Linear(hidden_dim, output_dim)

def forward(self, x):
    x = self.embedding(x).unsqueeze(0)  # Add batch dimension
    x = self.transformer(x, x)
    x = self.output_layer(x.squeeze(0))  # Remove batch dimension
    return x
Enter fullscreen mode Exit fullscreen mode

Memory system with prioritized experience retention

class Memory:
def init(self):
self.store = []

def remember(self, state, action, reward):
    self.store.append((state, action, reward))
    self.store.sort(key=lambda x: x[2], reverse=True)  # Prioritize high rewards
    if len(self.store) > 10000:
        self.store.pop(-1)  # Remove lowest priority experiences

def retrieve(self):
    return random.sample(self.store, min(10, len(self.store))) if self.store else [(None, None, 0)]
Enter fullscreen mode Exit fullscreen mode

Goal-based reinforcement learning agent with self-optimization

class AGIAgent:
def init(self, input_dim, hidden_dim, output_dim):
self.model = AGITransformer(input_dim, hidden_dim, output_dim)
self.memory = Memory()
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
self.criterion = nn.MSELoss()
self.goal = None # Internal goal system

def choose_action(self, state):
    state_tensor = torch.tensor(state, dtype=torch.float32)
    with torch.no_grad():
        action_values = self.model(state_tensor)
    return torch.argmax(action_values).item()

def train(self):
    if len(self.memory.store) < 10:
        return  # Not enough experiences yet

    for state, action, reward in self.memory.retrieve():
        state_tensor = torch.tensor(state, dtype=torch.float32)
        predicted_rewards = self.model(state_tensor)

        target = predicted_rewards.clone()
        target[action] = reward

        loss = self.criterion(predicted_rewards, target.detach())

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

def set_goal(self, new_goal):
    """Set a new internal goal for strategic planning."""
    self.goal = new_goal
    print(f"New goal set: {self.goal}")

def adjust_learning(self):
    """Meta-learning: Adjust learning rate based on recent success."""
    if self.memory.store and np.mean([r[2] for r in self.memory.store[-10:]]) > 0.5:
        for param_group in self.optimizer.param_groups:
            param_group['lr'] *= 1.1  # Increase learning rate if performing well
    elif self.memory.store:
        for param_group in self.optimizer.param_groups:
            param_group['lr'] *= 0.9  # Decrease if struggling
Enter fullscreen mode Exit fullscreen mode

Example environment interaction

if name == "main":
agent = AGIAgent(input_dim=10, hidden_dim=128, output_dim=4)
agent.set_goal("Maximize positive rewards while exploring efficiently.")

for episode in range(1000):  # Extended interaction loop for deeper learning
    state = np.random.rand(10)
    action = agent.choose_action(state)
    reward = np.random.rand() * (1 if action % 2 == 0 else -1)  # Structured reward
    agent.memory.remember(state, action, reward)
    agent.train()
    agent.adjust_learning()  # Optimize learning process dynamically

print("Training completed. The AGI model has learned from experience.")
Enter fullscreen mode Exit fullscreen mode

Qodo Takeover

Introducing Qodo Gen 1.0: Transform Your Workflow with Agentic AI

Rather than just generating snippets, our agents understand your entire project context, can make decisions, use tools, and carry out tasks autonomously.

Read full post

Top comments (0)

AWS GenAI LIVE image

Real challenges. Real solutions. Real talk.

From technical discussions to philosophical debates, AWS and AWS Partners examine the impact and evolution of gen AI.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay