Problem statement
Given a string containing digits from 2-9 inclusive,
return all possible letter combinations that the number could represent.
Return the answer in any order.
A mapping of digit to letters (just like on the telephone buttons) is given below.
Note that 1 does not map to any letters.
Problem statement taken from: https://leetcode.com/problems/letter-combinations-of-a-phone-number
Example 1:
Input: digits = "23"
Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]
Example 2:
Input: digits = ""
Output: []
Example 3:
Input: digits = "2"
Output: ["a", "b", "c"]
Constraints:
- 0 <= digits.length <= 4
- digits[i] is a digit in the range ['2', '9']
Explanation
The problem can be solved using both iterative and recursion approaches.
We will discuss the recursive solution in the blog.
Recursion
Each digit (except 0 and 1) can represent 3 to 4 different alphabets.
To store this data we can use a hash map where the key will be the digit and
its value will be the corresponding string.
The recursive function will try all the alphabets,
mapped to the current digit in alphabetic order,
and again call the recursive function for the next digit and
will pass on the current output string.
For example,
if the number is 34,
digit 3 is mapped to "def".
Three recursive functions will be called
for each character d, e, and f.
And for digit 4 which is mapped to "ghi", we
append characters g, h, and i to all d, e, and f.
This will generate dg, dh, di, eg, eh, ei and
fg, fh, fi.
Algorithm
- initialize hashmap with key as digit and value with the corresponding string.
- initialize the result as an empty array.
- if digits.size() != 0
- call recursive function generateCombination("", digits, 0)
- return result.
// generateCombination(current, digits, index)
- if index == digits.size
- append current in result.
- else
- currentDigit = digits[index]
- string mapping = hashmap[currentDigit];
- Loop
- for(int i = 0; i < mapping.size(); i++) {
generateCombination(current + mapping[i], digits, index + 1);
}
C++ solution
class Solution {
private:
map<char, string> m = {
{'2', "abc"}, {'3', "def"}, {'4', "ghi"},
{'5', "jkl"}, {'6', "mno"}, {'7', "pqrs"},
{'8', "tuv"}, {'9', "wxyz"}
};
vector<string> result;
public:
vector<string> letterCombinations(string digits) {
if(digits.size() != 0){
generateCombination("", digits, 0);
}
return result;
}
void generateCombination(string current, string digits, int index) {
if(index == digits.size()){
result.push_back(current);
} else {
char currentDigit = digits[index];
string mapping = m[currentDigit];
for(int i = 0; i < mapping.size(); i++){
generateCombination(current + mapping[i], digits, index+1);
}
}
}
};
Golang solution
var letters = [...]string{"", "", "abc", "def", "ghi", "jkl",
"mno", "pqrs", "tuv", "wxyz"}
func letterCombinations(digits string) []string {
if len(digits) == 0 {
return nil
}
var result []string
generateCombination("", digits, &result)
return result
}
func generateCombination(current string, digits string, ans *[]string) {
if len(digits) == 0 {
*ans = append(*ans, current)
return
}
currentDigit, _ := strconv.Atoi(string(digits[0]))
for i := 0; i < len(letters[currentDigit]); i++ {
generateCombination(current + string(letters[currentDigit][i]), digits[1:], ans)
}
}
Javascript solution
const map = {
2: 'abc',
3: 'def',
4: 'ghi',
5: 'jkl',
6: 'mno',
7: 'pqrs',
8: 'tuv',
9: 'wxyz',
};
let result = [];
var letterCombinations = function(digits) {
if (!digits) return [];
let current = [];
generateCombination(current, digits, 0);
return result;
};
function generateCombination(current, digits, index) {
if (index === digits.length) {
result.push(current.join(''));
return;
}
for (const char of map[digits[index]]) {
current.push(char);
generateCombination(current, digits, index + 1);
current.pop();
}
}
Let's dry-run our algorithm to see how the solution works.
Input: digits = "23"
Step 1: map<char, string> m = {
{'2', "abc"}, {'3', "def"}, {'4', "ghi"},
{'5', "jkl"}, {'6', "mno"}, {'7', "pqrs"},
{'8', "tuv"}, {'9', "wxyz"}
};
vector<string> result;
Step 2: digits.size() == 0
2 == 0
false
Step 3: generateCombination("", digits, 0)
Step 4: index == digits.size()
0 == 2
false
char currentDigit = digits[index];
currentDigit = digits[0];
currentDigit = "2"
string mapping = m[currentDigit];
mapping = m["2"]
mapping = "abc"
loop 1.0:
for(int i = 0; i < mapping.size(); i++)
0 < 2
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("" + mapping[0], "23", 0 + 1)
generateCombination("" + "a", "23", 0 + 1)
generateCombination("a", "23", 1)
Step 5: generateCombination("a", "23", 1)
index == digits.size()
1 == 2
false
char currentDigit = digits[1];
currentDigit = digits[1];
currentDigit = "3"
string mapping = m[currentDigit];
mapping = m["3"]
mapping = "def"
loop 1.1:
for(int i = 0; i < mapping.size(); i++)
0 < 3
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("a" + mapping[0], "23", 1 + 1)
generateCombination("a" + "d", "23", 1 + 1)
generateCombination("ad", "23", 2)
Step 6: generateCombination("ad", "23", 2)
index == digits.size()
2 == 2
true
result.push_back(current)
result.push_back("ad")
result = ["ad"]
Step 7: Algo flow returns to loop 1.1
loop 1.2:
for(int i = 0; i < mapping.size(); i++)
// since i was 0 it is incremented i++ to 1
i < mapping.size()
1 < 3
true
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("a" + mapping[1], "23", 1 + 1)
generateCombination("a" + "e", "23", 1 + 1)
generateCombination("ae", "23", 2)
Step 8: generateCombination("ae", "23", 2)
index == digits.size()
2 == 2
true
result.push_back(current)
result.push_back("ae")
result = ["ad", "ae"]
Step 9: Algo flow returns to loop 1.2
loop 1.3:
for(int i = 0; i < mapping.size(); i++)
// since i was 1 it is incremented i++ to 2
i < mapping.size()
2 < 3
true
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("a" + mapping[2], "23", 1 + 1)
generateCombination("a" + "f", "23", 1 + 1)
generateCombination("af", "23", 2)
Step 10: generateCombination("af", "23", 2)
index == digits.size()
2 == 2
true
result.push_back(current)
result.push_back("af")
result = ["ad", "ae", "af"]
Step 11: Algo flow returns to loop 1.3
loop 1.4:
for(int i = 0; i < mapping.size(); i++)
// since i was 2 it is incremented i++ to 3
i < mapping.size()
3 < 3
false
Step 12: Algo flow returns to loop 1.0
loop 1.5:
for(int i = 0; i < mapping.size(); i++)
// since i was 0 it is incremented i++ to 1
i < mapping.size()
1 < 3
true
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("" + mapping[1], "23", 0 + 1)
generateCombination("" + "b", "23", 0 + 1)
generateCombination("b", "23", 1)
Step 13: generateCombination("b", "23", 1)
index == digits.size()
1 == 2
false
char currentDigit = digits[1];
currentDigit = digits[1];
currentDigit = "3"
string mapping = m[currentDigit];
mapping = m["3"]
mapping = "def"
loop 2.1:
for(int i = 0; i < mapping.size(); i++)
0 < 3
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("b" + mapping[0], "23", 1 + 1)
generateCombination("b" + "d", "23", 1 + 1)
generateCombination("bd", "23", 2)
Step 14: generateCombination("bd", "23", 2)
index == digits.size()
2 == 2
true
result.push_back(current)
result.push_back("bd")
result = ["ad", "ae", "af", "bd"]
Step 15: Algo flow returns to loop 2.1
loop 2.2:
for(int i = 0; i < mapping.size(); i++)
// since i was 0 it is incremented i++ to 1
i < mapping.size()
1 < 3
true
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("b" + mapping[1], "23", 1 + 1)
generateCombination("b" + "e", "23", 1 + 1)
generateCombination("be", "23", 2)
Step 16: generateCombination("be", "23", 2)
index == digits.size()
2 == 2
true
result.push_back(current)
result.push_back("be")
result = ["ad", "ae", "af", "bd", "be"]
Step 17: Algo flow returns to loop 2.2
loop 2.3:
for(int i = 0; i < mapping.size(); i++)
// since i was 1 it is incremented i++ to 2
i < mapping.size()
2 < 3
true
generateCombination(current + mapping[i], digits, index + 1)
generateCombination("b" + mapping[1], "23", 1 + 1)
generateCombination("b" + "f", "23", 1 + 1)
generateCombination("bf", "23", 2)
Step 18: generateCombination("bf", "23", 2)
index == digits.size()
2 == 2
true
result.push_back(current)
result.push_back("bf")
result = ["ad", "ae", "af", "bd", "be", "bf"]
// similar steps are triggered for c with d, e, and f.
The output is
["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]
Top comments (0)