π Table of Contents
- What is Docker Model Runner?
 - π Quick Setup Guide
 - π Essential Commands
 - π API Integration
 - π³ Docker Compose Integration
 
What is Docker Model Runner?
Docker Model Runner is a new feature integrated into Docker Desktop that enables developers to run AI models locally with zero setup complexity. Built into Docker Desktop 4.40+, it brings LLM (Large Language Model) inference directly into your GenAI development workflow.
Key Benefits
- β No extra infrastructure - Runs natively on your machine
 - β OpenAI-compatible API - Drop-in replacement for OpenAI calls
 - β GPU acceleration - Optimized for Apple Silicon and NVIDIA GPUs
 - β OCI artifacts - Models distributed as OCI artifacts
 - β Host-based execution - Maximum performance, no VM overhead
 
π Quick Setup Guide
Prerequisites
- Docker Desktop 4.40+ (4.41+ for Windows GPU support)
 - macOS: Apple Silicon (M1/M2/M3) for optimal performance
 - Windows: NVIDIA GPU (for GPU acceleration)
 - Linux: Docker Engine with Model Runner
 
Enable Docker Model Runner
Docker Desktop (GUI)
- Open Docker Desktop Settings
 - Navigate to Features in development β Beta
 - Enable "Docker Model Runner"
 - Apply & Restart
 
Docker Desktop (CLI)
# Enable Model Runner
docker desktop enable model-runner
# Enable with TCP support (for host access)
docker desktop enable model-runner --tcp 12434
# Check status
docker desktop status
Docker Engine (Linux)
sudo apt-get update
sudo apt-get install docker-model-plugin
π Essential Commands
Model Management
Pull Models
# Pull latest version
docker model pull ai/smollm2
List Models
# List all local models
docker model ls
Remove Models
# Remove specific model
docker model rm ai/smollm2
Running Models
Interactive Mode
# Quick inference
docker model run ai/smollm2 "Explain Docker in one sentence"
Model Information
# Inspect model details
docker model inspect ai/smollm2
π API Integration
OpenAI-Compatible Endpoints
From Containers
# Base URL for container access
http://model-runner.docker.internal/engines/llama.cpp/v1/
From Host (with TCP enabled)
# Base URL for host access
http://localhost:12434/engines/llama.cpp/v1/
Chat Completions API
cURL Example
curl http://localhost:12434/engines/llama.cpp/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "ai/smollm2",
    "messages": [
      {
        "role": "system",
        "content": "You are a helpful coding assistant."
      },
      {
        "role": "user", 
        "content": "Write a Docker Compose file for a web app"
      }
    ],
    "temperature": 0.7,
    "max_tokens": 500
  }'
Python Example
import openai
# Configure client for local Model Runner
client = openai.OpenAI(
    base_url="http://model-runner.docker.internal/engines/llama.cpp/v1",
    api_key="not-needed"  # Local inference doesn't need API key
)
# Chat completion
response = client.chat.completions.create(
    model="ai/smollm2",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Explain containerization benefits"}
    ],
    temperature=0.7,
    max_tokens=200
)
print(response.choices[0].message.content)
Node.js Example
import OpenAI from 'openai';
const openai = new OpenAI({
  baseURL: 'http://model-runner.docker.internal/engines/llama.cpp/v1',
  apiKey: 'not-needed'
});
async function chatWithModel() {
  const completion = await openai.chat.completions.create({
    model: 'ai/smollm2',
    messages: [
      { role: 'system', content: 'You are a DevOps expert.' },
      { role: 'user', content: 'Best practices for Docker in production?' }
    ],
    temperature: 0.8,
    max_tokens: 300
  });
  console.log(completion.choices[0].message.content);
}
π³ Docker Compose Integration
services:
  chat:
    image: my-chat-app
    depends_on:
      - ai_runner
  ai_runner:
    provider:
      type: model
      options:
        model: ai/smollm2
π³ Docker Model Management Endpoints
POST /models/create
GET /models
GET /models/{namespace}/{name}
DELETE /models/{namespace}/{name}
OpenAI Endpoints:
GET /engines/llama.cpp/v1/models
GET /engines/llama.cpp/v1/models/{namespace}/{name}
POST /engines/llama.cpp/v1/chat/completions
POST /engines/llama.cpp/v1/completions
POST /engines/llama.cpp/v1/embeddings
              
    
Top comments (0)