“Simplicity is the ultimate sophistication.” – Steve Jobs
When you build an ML pipeline, complexity creeps in fast.
That’s what happened to our FastRTC detector—a YOLO-based module for detection + tracking + OCR.
It worked. But it was over-engineered.
🔥 The Problem
The original detector had:
- Tracking spaghetti 🍝
- Custom GPU/CPU optimizations nobody could maintain
- Complicated caching and cleanup logic
- Hard-to-debug annotation code
Result? More time fixing than time shipping.
✨ The Fix: Trust YOLO
Instead of reinventing everything, we simplified using Ultralytics’ own best practices.
âś… Tracking
if self.enable_tracking:
results = self.model.track(
frame,
conf=self.confidence_threshold,
persist=True,
tracker=f"{self.tracker_type}.yaml",
verbose=False
)
else:
results = self.model(frame, conf=self.confidence_threshold, verbose=False)
âś… Results Extraction
result = results[0]
boxes = result.boxes
masks = getattr(result, 'masks', None)
track_ids = None
if boxes is not None and hasattr(boxes, 'id'):
track_ids = boxes.id.cpu().numpy().astype(int)
âś… Annotation
annotated_frame = result.plot(line_width=2, conf=True, labels=True)
if self.enable_tracking and track_ids is not None:
for i, track_id in enumerate(track_ids):
cv2.putText(annotated_frame, f"ID:{track_id}", ...)
âś… OCR Caching
if track_id and track_id in self.tracked_objects:
detection["ocr"] = self.tracked_objects[track_id]["ocr_result"]
else:
detection["ocr"] = self.ocr_pipeline.extract_text_from_region(frame, bbox, mask)
âś… Track Management
def _simple_track_cleanup(self):
max_tracks = 30
if len(self.tracked_objects) > max_tracks:
oldest = sorted(self.tracked_objects.items(), key=lambda x: x[1].get("first_seen_frame", 0))
self.tracked_objects = dict(oldest[-max_tracks:])
🎯 The Results
- 40% fewer lines of code
- Cleaner, linear flow
- Predictable performance (let YOLO optimize)
- Fully functional: detection, tracking, OCR, annotations
- Much easier to debug + extend
🚀 Takeaway
If you’re building on YOLO:
👉 Don’t fight it.
👉 Don’t over-engineer it.
👉 Trust the framework—Ultralytics already optimized it for you.
Your code will be:
- Shorter
- Faster
- Easier to maintain
đź’ˇ Next time your ML pipeline feels messy, ask yourself:
“Am I making this harder than it needs to be?”
Top comments (0)